263 lines
9.7 KiB
C
263 lines
9.7 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:46:01 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 32 FP multiplications,
|
|
* (or, 36 additions, 24 multiplications, 8 fused multiply/add),
|
|
* 22 stack variables, 0 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/simd/q1b.h"
|
|
|
|
static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
|
{
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
|
|
V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
|
|
V Tl;
|
|
{
|
|
V T1, T2, Ty, Tz;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T3 = VSUB(T1, T2);
|
|
T9 = VADD(T1, T2);
|
|
Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
|
Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
|
TA = VSUB(Ty, Tz);
|
|
TG = VADD(Ty, Tz);
|
|
}
|
|
{
|
|
V TB, TC, T4, T5;
|
|
TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
TD = VSUB(TB, TC);
|
|
TH = VADD(TB, TC);
|
|
T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T6 = VSUB(T4, T5);
|
|
Ta = VADD(T4, T5);
|
|
}
|
|
{
|
|
V Tc, Td, Tn, To;
|
|
Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
|
Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
|
Te = VSUB(Tc, Td);
|
|
Tk = VADD(Tc, Td);
|
|
Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
|
To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
|
Tp = VSUB(Tn, To);
|
|
Tv = VADD(Tn, To);
|
|
}
|
|
{
|
|
V Tq, Tr, Tf, Tg;
|
|
Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Ts = VSUB(Tq, Tr);
|
|
Tw = VADD(Tq, Tr);
|
|
Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Th = VSUB(Tf, Tg);
|
|
Tl = VADD(Tf, Tg);
|
|
}
|
|
ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
|
|
{
|
|
V T7, Ti, Tt, TE;
|
|
T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3));
|
|
ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
|
|
Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
|
|
TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
}
|
|
{
|
|
V T8, Tj, Tu, TF;
|
|
T8 = BYTW(&(W[0]), VFMAI(T6, T3));
|
|
ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
|
|
Tj = BYTW(&(W[0]), VFMAI(Th, Te));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Tu = BYTW(&(W[0]), VFMAI(Ts, Tp));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
|
|
TF = BYTW(&(W[0]), VFMAI(TD, TA));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
}
|
|
{
|
|
V Tb, Tm, Tx, TI;
|
|
Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
|
|
ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
|
|
Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
|
|
TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, { 36, 24, 8, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_q1bv_4) (planner *p) {
|
|
X(kdft_difsq_register) (p, q1bv_4, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */
|
|
|
|
/*
|
|
* This function contains 44 FP additions, 24 FP multiplications,
|
|
* (or, 44 additions, 24 multiplications, 0 fused multiply/add),
|
|
* 22 stack variables, 0 constants, and 32 memory accesses
|
|
*/
|
|
#include "dft/simd/q1b.h"
|
|
|
|
static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
|
{
|
|
{
|
|
INT m;
|
|
R *x;
|
|
x = ii;
|
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
|
|
V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
|
|
V Tl;
|
|
{
|
|
V T1, T2, Ty, Tz;
|
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
|
T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
|
T3 = VSUB(T1, T2);
|
|
T9 = VADD(T1, T2);
|
|
Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
|
Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
|
TA = VSUB(Ty, Tz);
|
|
TG = VADD(Ty, Tz);
|
|
}
|
|
{
|
|
V TB, TC, T4, T5;
|
|
TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
TD = VBYI(VSUB(TB, TC));
|
|
TH = VADD(TB, TC);
|
|
T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
|
T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
|
T6 = VBYI(VSUB(T4, T5));
|
|
Ta = VADD(T4, T5);
|
|
}
|
|
{
|
|
V Tc, Td, Tn, To;
|
|
Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
|
Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
|
Te = VSUB(Tc, Td);
|
|
Tk = VADD(Tc, Td);
|
|
Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
|
To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
|
Tp = VSUB(Tn, To);
|
|
Tv = VADD(Tn, To);
|
|
}
|
|
{
|
|
V Tq, Tr, Tf, Tg;
|
|
Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Ts = VBYI(VSUB(Tq, Tr));
|
|
Tw = VADD(Tq, Tr);
|
|
Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Th = VBYI(VSUB(Tf, Tg));
|
|
Tl = VADD(Tf, Tg);
|
|
}
|
|
ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
|
|
ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
|
|
ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
|
|
{
|
|
V T7, Ti, Tt, TE;
|
|
T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));
|
|
ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
|
|
Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
|
|
TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));
|
|
ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
|
}
|
|
{
|
|
V T8, Tj, Tu, TF;
|
|
T8 = BYTW(&(W[0]), VADD(T3, T6));
|
|
ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
|
|
Tj = BYTW(&(W[0]), VADD(Te, Th));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
Tu = BYTW(&(W[0]), VADD(Tp, Ts));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
|
|
TF = BYTW(&(W[0]), VADD(TA, TD));
|
|
ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
|
}
|
|
{
|
|
V Tb, Tm, Tx, TI;
|
|
Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
|
|
ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
|
|
Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
|
|
TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
|
|
ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
VTW(0, 1),
|
|
VTW(0, 2),
|
|
VTW(0, 3),
|
|
{ TW_NEXT, VL, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, { 44, 24, 0, 0 }, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_q1bv_4) (planner *p) {
|
|
X(kdft_difsq_register) (p, q1bv_4, &desc);
|
|
}
|
|
#endif
|