iup-stack/fftw/dft/simd/common/n1fv_9.c

256 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:59 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include dft/simd/n1f.h */
/*
* This function contains 46 FP additions, 38 FP multiplications,
* (or, 12 additions, 4 multiplications, 34 fused multiply/add),
* 50 stack variables, 19 constants, and 18 memory accesses
*/
#include "dft/simd/n1f.h"
static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
V T5, Tv, Tj, Tl, Tm, Ta, Tf, Tk, Ts, TB, Tx, Tn, To, TC, Ty;
V Ti, Tg, Th;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VADD(T1, T4);
Tv = VSUB(T3, T2);
Tj = VFNMS(LDK(KP500000000), T4, T1);
}
{
V T6, Tb, T9, Te;
T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
{
V T7, T8, Tc, Td;
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T9 = VADD(T7, T8);
Tl = VSUB(T7, T8);
Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Te = VADD(Tc, Td);
Tm = VSUB(Td, Tc);
}
Ta = VADD(T6, T9);
Tf = VADD(Tb, Te);
Tk = VFNMS(LDK(KP500000000), Te, Tb);
Ts = VFNMS(LDK(KP439692620), Tl, Tk);
TB = VFNMS(LDK(KP152703644), Tm, Tk);
Tx = VFMA(LDK(KP203604859), Tk, Tm);
Tn = VFNMS(LDK(KP500000000), T9, T6);
To = VFNMS(LDK(KP586256827), Tn, Tm);
TC = VFMA(LDK(KP968908795), Tn, Tl);
Ty = VFNMS(LDK(KP726681596), Tl, Tn);
}
Ti = VMUL(LDK(KP866025403), VSUB(Tf, Ta));
Tg = VADD(Ta, Tf);
Th = VFNMS(LDK(KP500000000), Tg, T5);
ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 6)]), VFNMSI(Ti, Th), ovs, &(xo[0]));
{
V Tq, Tu, Tp, Tt, Tr, Tw;
Tp = VFNMS(LDK(KP347296355), To, Tl);
Tq = VFNMS(LDK(KP907603734), Tp, Tk);
Tt = VFNMS(LDK(KP420276625), Ts, Tm);
Tu = VFNMS(LDK(KP826351822), Tt, Tn);
Tr = VFNMS(LDK(KP939692620), Tq, Tj);
Tw = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tv, Tu));
ST(&(xo[WS(os, 2)]), VFNMSI(Tw, Tr), ovs, &(xo[0]));
ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)]));
}
{
V TA, TG, TE, TJ, TH, TK;
{
V Tz, TF, TD, TI;
Tz = VFMA(LDK(KP898197570), Ty, Tx);
TF = VFNMS(LDK(KP673648177), TC, TB);
TA = VFMA(LDK(KP852868531), Tz, Tj);
TG = VFNMS(LDK(KP500000000), Tz, TF);
TD = VFMA(LDK(KP673648177), TC, TB);
TI = VFNMS(LDK(KP898197570), Ty, Tx);
TE = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tv, TD));
TJ = VFMA(LDK(KP666666666), TD, TI);
}
ST(&(xo[WS(os, 1)]), VFNMSI(TE, TA), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 8)]), VFMAI(TE, TA), ovs, &(xo[0]));
TH = VFMA(LDK(KP852868531), TG, Tj);
TK = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TJ, Tv));
ST(&(xo[WS(os, 5)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 4)]), VFMAI(TK, TH), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), { 12, 4, 34, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1fv_9) (planner *p) { X(kdft_register) (p, n1fv_9, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include dft/simd/n1f.h */
/*
* This function contains 46 FP additions, 26 FP multiplications,
* (or, 30 additions, 10 multiplications, 16 fused multiply/add),
* 41 stack variables, 14 constants, and 18 memory accesses
*/
#include "dft/simd/n1f.h"
static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT i;
const R *xi;
R *xo;
xi = ri;
xo = ro;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
V T5, Ts, Tj, To, Tf, Tn, Tp, Tu, Tl, Ta, Tk, Tm, Tt;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VADD(T1, T4);
Ts = VMUL(LDK(KP866025403), VSUB(T3, T2));
Tj = VFNMS(LDK(KP500000000), T4, T1);
}
{
V Tb, Te, Tc, Td;
Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Te = VADD(Tc, Td);
To = VSUB(Td, Tc);
Tf = VADD(Tb, Te);
Tn = VFNMS(LDK(KP500000000), Te, Tb);
Tp = VFMA(LDK(KP173648177), Tn, VMUL(LDK(KP852868531), To));
Tu = VFNMS(LDK(KP984807753), Tn, VMUL(LDK(KP150383733), To));
}
{
V T6, T9, T7, T8;
T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T9 = VADD(T7, T8);
Tl = VSUB(T8, T7);
Ta = VADD(T6, T9);
Tk = VFNMS(LDK(KP500000000), T9, T6);
Tm = VFMA(LDK(KP766044443), Tk, VMUL(LDK(KP556670399), Tl));
Tt = VFNMS(LDK(KP642787609), Tk, VMUL(LDK(KP663413948), Tl));
}
{
V Ti, Tg, Th, Tz, TA;
Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Ta)));
Tg = VADD(Ta, Tf);
Th = VFNMS(LDK(KP500000000), Tg, T5);
ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0]));
ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 6)]), VSUB(Th, Ti), ovs, &(xo[0]));
Tz = VFMA(LDK(KP173648177), Tk, VFNMS(LDK(KP296198132), To, VFNMS(LDK(KP939692620), Tn, VFNMS(LDK(KP852868531), Tl, Tj))));
TA = VBYI(VSUB(VFNMS(LDK(KP342020143), Tn, VFNMS(LDK(KP150383733), Tl, VFNMS(LDK(KP984807753), Tk, VMUL(LDK(KP813797681), To)))), Ts));
ST(&(xo[WS(os, 7)]), VSUB(Tz, TA), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 2)]), VADD(Tz, TA), ovs, &(xo[0]));
{
V Tr, Tx, Tw, Ty, Tq, Tv;
Tq = VADD(Tm, Tp);
Tr = VADD(Tj, Tq);
Tx = VFMA(LDK(KP866025403), VSUB(Tt, Tu), VFNMS(LDK(KP500000000), Tq, Tj));
Tv = VADD(Tt, Tu);
Tw = VBYI(VADD(Ts, Tv));
Ty = VBYI(VADD(Ts, VFNMS(LDK(KP500000000), Tv, VMUL(LDK(KP866025403), VSUB(Tp, Tm)))));
ST(&(xo[WS(os, 8)]), VSUB(Tr, Tw), ovs, &(xo[0]));
ST(&(xo[WS(os, 4)]), VADD(Tx, Ty), ovs, &(xo[0]));
ST(&(xo[WS(os, 1)]), VADD(Tw, Tr), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 5)]), VSUB(Tx, Ty), ovs, &(xo[WS(os, 1)]));
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), { 30, 10, 16, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1fv_9) (planner *p) { X(kdft_register) (p, n1fv_9, &desc);
}
#endif