iup-stack/fftw/dft/simd/common/n1bv_9.c

256 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:03 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */
/*
* This function contains 46 FP additions, 38 FP multiplications,
* (or, 12 additions, 4 multiplications, 34 fused multiply/add),
* 50 stack variables, 19 constants, and 18 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
V T5, TF, Tp, Te, Td, TG, TH, Ta, Tm, Tu, Tr, Th, Ti, Tv, Ts;
V TK, TI, TJ;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VFNMS(LDK(KP500000000), T4, T1);
TF = VADD(T1, T4);
Tp = VSUB(T2, T3);
}
{
V T6, Tf, T9, Tg;
T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
{
V T7, T8, Tb, Tc;
T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T9 = VADD(T7, T8);
Te = VSUB(T8, T7);
Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Td = VSUB(Tb, Tc);
Tg = VADD(Tb, Tc);
}
TG = VADD(Tf, Tg);
TH = VADD(T6, T9);
Ta = VFNMS(LDK(KP500000000), T9, T6);
Tm = VFNMS(LDK(KP439692620), Td, Ta);
Tu = VFMA(LDK(KP203604859), Ta, Te);
Tr = VFNMS(LDK(KP152703644), Te, Ta);
Th = VFNMS(LDK(KP500000000), Tg, Tf);
Ti = VFNMS(LDK(KP586256827), Th, Te);
Tv = VFNMS(LDK(KP726681596), Td, Th);
Ts = VFMA(LDK(KP968908795), Th, Td);
}
TK = VMUL(LDK(KP866025403), VSUB(TG, TH));
TI = VADD(TG, TH);
TJ = VFNMS(LDK(KP500000000), TI, TF);
ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)]));
ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0]));
ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0]));
{
V Tk, To, Tj, Tn, Tl, Tq;
Tj = VFNMS(LDK(KP347296355), Ti, Td);
Tk = VFNMS(LDK(KP907603734), Tj, Ta);
Tn = VFNMS(LDK(KP420276625), Tm, Te);
To = VFNMS(LDK(KP826351822), Tn, Th);
Tl = VFNMS(LDK(KP939692620), Tk, T5);
Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To));
ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0]));
}
{
V Tx, TD, TB, TE, Ty, TC;
{
V Tt, Tw, Tz, TA;
Tt = VFNMS(LDK(KP673648177), Ts, Tr);
Tw = VFMA(LDK(KP898197570), Tv, Tu);
Tx = VFNMS(LDK(KP500000000), Tw, Tt);
TD = VFMA(LDK(KP852868531), Tw, T5);
Tz = VFNMS(LDK(KP898197570), Tv, Tu);
TA = VFMA(LDK(KP673648177), Ts, Tr);
TB = VFMA(LDK(KP666666666), TA, Tz);
TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA));
}
ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
Ty = VFMA(LDK(KP852868531), Tx, T5);
TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp));
ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0]));
ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 12, 4, 34, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */
/*
* This function contains 46 FP additions, 26 FP multiplications,
* (or, 30 additions, 10 multiplications, 16 fused multiply/add),
* 41 stack variables, 14 constants, and 18 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) {
V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn;
{
V T1, T2, T3, T4;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
T5 = VFNMS(LDK(KP500000000), T4, T1);
Ty = VADD(T1, T4);
Tm = VMUL(LDK(KP866025403), VSUB(T2, T3));
}
{
V Td, Tg, Te, Tf;
Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
Tg = VADD(Te, Tf);
Ti = VSUB(Te, Tf);
Tw = VADD(Td, Tg);
Th = VFNMS(LDK(KP500000000), Tg, Td);
Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th));
To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th));
}
{
V T6, T9, T7, T8;
T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
T9 = VADD(T7, T8);
Tb = VSUB(T7, T8);
Tv = VADD(T6, T9);
Ta = VFNMS(LDK(KP500000000), T9, T6);
Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta));
Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta));
}
{
V Tx, Tz, TA, Tt, Tu;
Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw)));
Tz = VADD(Tv, Tw);
TA = VFNMS(LDK(KP500000000), Tz, Ty);
ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)]));
ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0]));
ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0]));
Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5))));
Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm));
ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0]));
{
V Tl, Ts, Tq, Tr, Tk, Tp;
Tk = VADD(Tc, Tj);
Tl = VADD(T5, Tk);
Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5));
Tp = VADD(Tn, To);
Tq = VBYI(VADD(Tm, Tp));
Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj)))));
ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0]));
ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0]));
}
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 30, 10, 16, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc);
}
#endif