iup-stack/fftw/dft/simd/common/n1bv_12.c

255 lines
8.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:04 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
/*
* This function contains 48 FP additions, 20 FP multiplications,
* (or, 30 additions, 2 multiplications, 18 fused multiply/add),
* 27 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts;
{
V T1, T6, T4, Tz, T9, TA;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
{
V T2, T3, T7, T8;
T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
Tz = VSUB(T2, T3);
T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T9 = VADD(T7, T8);
TA = VSUB(T7, T8);
}
T5 = VADD(T1, T4);
Ta = VADD(T6, T9);
TJ = VSUB(Tz, TA);
TB = VADD(Tz, TA);
Tq = VFNMS(LDK(KP500000000), T9, T6);
Tp = VFNMS(LDK(KP500000000), T4, T1);
}
{
V Tc, Th, Tf, Tw, Tk, Tx;
Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
{
V Td, Te, Ti, Tj;
Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Tf = VADD(Td, Te);
Tw = VSUB(Td, Te);
Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Tk = VADD(Ti, Tj);
Tx = VSUB(Tj, Ti);
}
Tg = VADD(Tc, Tf);
Tl = VADD(Th, Tk);
TG = VADD(Tw, Tx);
Ty = VSUB(Tw, Tx);
Tt = VFNMS(LDK(KP500000000), Tk, Th);
Ts = VFNMS(LDK(KP500000000), Tf, Tc);
}
{
V Tb, Tm, Tn, To;
Tb = VSUB(T5, Ta);
Tm = VSUB(Tg, Tl);
ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
Tn = VADD(T5, Ta);
To = VADD(Tg, Tl);
ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
}
{
V TC, TE, Tv, TD, Tr, Tu;
TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
Tr = VADD(Tp, Tq);
Tu = VADD(Ts, Tt);
Tv = VSUB(Tr, Tu);
TD = VADD(Tr, Tu);
ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
}
{
V TH, TL, TK, TM, TF, TI;
TF = VSUB(Tp, Tq);
TH = VFNMS(LDK(KP866025403), TG, TF);
TL = VFMA(LDK(KP866025403), TG, TF);
TI = VSUB(Ts, Tt);
TK = VFMA(LDK(KP866025403), TJ, TI);
TM = VFNMS(LDK(KP866025403), TJ, TI);
ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 30, 2, 18, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
/*
* This function contains 48 FP additions, 8 FP multiplications,
* (or, 44 additions, 4 multiplications, 4 fused multiply/add),
* 27 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/simd/n1b.h"
static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT i;
const R *xi;
R *xo;
xi = ii;
xo = io;
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
{
V T1, T6, T4, Tk, T9, Tl;
T1 = LD(&(xi[0]), ivs, &(xi[0]));
T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
{
V T2, T3, T7, T8;
T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
T4 = VADD(T2, T3);
Tk = VSUB(T2, T3);
T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
T9 = VADD(T7, T8);
Tl = VSUB(T7, T8);
}
T5 = VFNMS(LDK(KP500000000), T4, T1);
Ta = VFNMS(LDK(KP500000000), T9, T6);
TG = VADD(T6, T9);
TF = VADD(T1, T4);
Ty = VADD(Tk, Tl);
Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
}
{
V Tn, Tq, Te, To, Th, Tr;
Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
{
V Tc, Td, Tf, Tg;
Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
Te = VSUB(Tc, Td);
To = VADD(Tc, Td);
Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
Th = VSUB(Tf, Tg);
Tr = VADD(Tf, Tg);
}
Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
Tp = VFNMS(LDK(KP500000000), To, Tn);
TJ = VADD(Tq, Tr);
TI = VADD(Tn, To);
Tx = VADD(Te, Th);
Ts = VFNMS(LDK(KP500000000), Tr, Tq);
}
{
V TH, TK, TL, TM;
TH = VSUB(TF, TG);
TK = VBYI(VSUB(TI, TJ));
ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
TL = VADD(TF, TG);
TM = VADD(TI, TJ);
ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
}
{
V Tj, Tv, Tu, Tw, Tb, Tt;
Tb = VSUB(T5, Ta);
Tj = VSUB(Tb, Ti);
Tv = VADD(Tb, Ti);
Tt = VSUB(Tp, Ts);
Tu = VBYI(VADD(Tm, Tt));
Tw = VBYI(VSUB(Tt, Tm));
ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
}
{
V Tz, TD, TC, TE, TA, TB;
Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
TA = VADD(T5, Ta);
TB = VADD(Tp, Ts);
TC = VSUB(TA, TB);
TE = VADD(TA, TB);
ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
}
}
}
VLEAVE();
}
static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 44, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 };
void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc);
}
#endif