255 lines
8.6 KiB
C
255 lines
8.6 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:45:04 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
|
|
|
|
/*
|
|
* This function contains 48 FP additions, 20 FP multiplications,
|
|
* (or, 30 additions, 2 multiplications, 18 fused multiply/add),
|
|
* 27 stack variables, 2 constants, and 24 memory accesses
|
|
*/
|
|
#include "dft/simd/n1b.h"
|
|
|
|
static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
|
{
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT i;
|
|
const R *xi;
|
|
R *xo;
|
|
xi = ii;
|
|
xo = io;
|
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
|
V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts;
|
|
{
|
|
V T1, T6, T4, Tz, T9, TA;
|
|
T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
|
T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
|
{
|
|
V T2, T3, T7, T8;
|
|
T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
|
T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
|
T4 = VADD(T2, T3);
|
|
Tz = VSUB(T2, T3);
|
|
T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
|
T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
|
T9 = VADD(T7, T8);
|
|
TA = VSUB(T7, T8);
|
|
}
|
|
T5 = VADD(T1, T4);
|
|
Ta = VADD(T6, T9);
|
|
TJ = VSUB(Tz, TA);
|
|
TB = VADD(Tz, TA);
|
|
Tq = VFNMS(LDK(KP500000000), T9, T6);
|
|
Tp = VFNMS(LDK(KP500000000), T4, T1);
|
|
}
|
|
{
|
|
V Tc, Th, Tf, Tw, Tk, Tx;
|
|
Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
|
Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
|
{
|
|
V Td, Te, Ti, Tj;
|
|
Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
|
Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
|
Tf = VADD(Td, Te);
|
|
Tw = VSUB(Td, Te);
|
|
Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
|
Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
|
Tk = VADD(Ti, Tj);
|
|
Tx = VSUB(Tj, Ti);
|
|
}
|
|
Tg = VADD(Tc, Tf);
|
|
Tl = VADD(Th, Tk);
|
|
TG = VADD(Tw, Tx);
|
|
Ty = VSUB(Tw, Tx);
|
|
Tt = VFNMS(LDK(KP500000000), Tk, Th);
|
|
Ts = VFNMS(LDK(KP500000000), Tf, Tc);
|
|
}
|
|
{
|
|
V Tb, Tm, Tn, To;
|
|
Tb = VSUB(T5, Ta);
|
|
Tm = VSUB(Tg, Tl);
|
|
ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
|
|
Tn = VADD(T5, Ta);
|
|
To = VADD(Tg, Tl);
|
|
ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
|
|
ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V TC, TE, Tv, TD, Tr, Tu;
|
|
TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
|
|
TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
|
|
Tr = VADD(Tp, Tq);
|
|
Tu = VADD(Ts, Tt);
|
|
Tv = VSUB(Tr, Tu);
|
|
TD = VADD(Tr, Tu);
|
|
ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V TH, TL, TK, TM, TF, TI;
|
|
TF = VSUB(Tp, Tq);
|
|
TH = VFNMS(LDK(KP866025403), TG, TF);
|
|
TL = VFMA(LDK(KP866025403), TG, TF);
|
|
TI = VSUB(Ts, Tt);
|
|
TK = VFMA(LDK(KP866025403), TJ, TI);
|
|
TM = VFNMS(LDK(KP866025403), TJ, TI);
|
|
ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 30, 2, 18, 0 }, &GENUS, 0, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc);
|
|
}
|
|
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
|
|
|
|
/*
|
|
* This function contains 48 FP additions, 8 FP multiplications,
|
|
* (or, 44 additions, 4 multiplications, 4 fused multiply/add),
|
|
* 27 stack variables, 2 constants, and 24 memory accesses
|
|
*/
|
|
#include "dft/simd/n1b.h"
|
|
|
|
static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
|
{
|
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
|
{
|
|
INT i;
|
|
const R *xi;
|
|
R *xo;
|
|
xi = ii;
|
|
xo = io;
|
|
for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
|
|
V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
|
|
{
|
|
V T1, T6, T4, Tk, T9, Tl;
|
|
T1 = LD(&(xi[0]), ivs, &(xi[0]));
|
|
T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
|
|
{
|
|
V T2, T3, T7, T8;
|
|
T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
|
|
T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
|
|
T4 = VADD(T2, T3);
|
|
Tk = VSUB(T2, T3);
|
|
T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
|
|
T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
|
|
T9 = VADD(T7, T8);
|
|
Tl = VSUB(T7, T8);
|
|
}
|
|
T5 = VFNMS(LDK(KP500000000), T4, T1);
|
|
Ta = VFNMS(LDK(KP500000000), T9, T6);
|
|
TG = VADD(T6, T9);
|
|
TF = VADD(T1, T4);
|
|
Ty = VADD(Tk, Tl);
|
|
Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
|
|
}
|
|
{
|
|
V Tn, Tq, Te, To, Th, Tr;
|
|
Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
|
|
Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
|
|
{
|
|
V Tc, Td, Tf, Tg;
|
|
Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
|
|
Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
|
|
Te = VSUB(Tc, Td);
|
|
To = VADD(Tc, Td);
|
|
Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
|
|
Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
|
|
Th = VSUB(Tf, Tg);
|
|
Tr = VADD(Tf, Tg);
|
|
}
|
|
Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
|
|
Tp = VFNMS(LDK(KP500000000), To, Tn);
|
|
TJ = VADD(Tq, Tr);
|
|
TI = VADD(Tn, To);
|
|
Tx = VADD(Te, Th);
|
|
Ts = VFNMS(LDK(KP500000000), Tr, Tq);
|
|
}
|
|
{
|
|
V TH, TK, TL, TM;
|
|
TH = VSUB(TF, TG);
|
|
TK = VBYI(VSUB(TI, TJ));
|
|
ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
|
|
TL = VADD(TF, TG);
|
|
TM = VADD(TI, TJ);
|
|
ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
|
|
ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
|
|
}
|
|
{
|
|
V Tj, Tv, Tu, Tw, Tb, Tt;
|
|
Tb = VSUB(T5, Ta);
|
|
Tj = VSUB(Tb, Ti);
|
|
Tv = VADD(Tb, Ti);
|
|
Tt = VSUB(Tp, Ts);
|
|
Tu = VBYI(VADD(Tm, Tt));
|
|
Tw = VBYI(VSUB(Tt, Tm));
|
|
ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
|
|
ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
|
|
}
|
|
{
|
|
V Tz, TD, TC, TE, TA, TB;
|
|
Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
|
|
TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
|
|
TA = VADD(T5, Ta);
|
|
TB = VADD(Tp, Ts);
|
|
TC = VSUB(TA, TB);
|
|
TE = VADD(TA, TB);
|
|
ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
|
|
ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
|
|
}
|
|
}
|
|
}
|
|
VLEAVE();
|
|
}
|
|
|
|
static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), { 44, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 };
|
|
|
|
void XSIMD(codelet_n1bv_12) (planner *p) { X(kdft_register) (p, n1bv_12, &desc);
|
|
}
|
|
|
|
#endif
|