iup-stack/fftw/dft/scalar/codelets/t2_10.c

510 lines
14 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:37 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */
/*
* This function contains 114 FP additions, 94 FP multiplications,
* (or, 48 additions, 28 multiplications, 66 fused multiply/add),
* 63 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) {
E T2, T3, T8, Tc, T5, T6, Tl, T7, TB, TF, T12, TY, To, Ts, Tw;
E Tb, Td, Th;
{
E TA, TX, TE, T11, Ta, T4;
T2 = W[0];
T3 = W[2];
T4 = T2 * T3;
T8 = W[4];
TA = T2 * T8;
TX = T3 * T8;
Tc = W[5];
TE = T2 * Tc;
T11 = T3 * Tc;
T5 = W[1];
T6 = W[3];
Ta = T2 * T6;
Tl = FMA(T5, T6, T4);
T7 = FNMS(T5, T6, T4);
TB = FMA(T5, Tc, TA);
TF = FNMS(T5, T8, TE);
T12 = FNMS(T6, T8, T11);
TY = FMA(T6, Tc, TX);
{
E Tr, Tv, T9, Tg;
Tr = Tl * T8;
Tv = Tl * Tc;
To = FNMS(T5, T3, Ta);
Ts = FMA(To, Tc, Tr);
Tw = FNMS(To, T8, Tv);
T9 = T7 * T8;
Tg = T7 * Tc;
Tb = FMA(T5, T3, Ta);
Td = FMA(Tb, Tc, T9);
Th = FNMS(Tb, T8, Tg);
}
}
{
E Tk, T1c, T24, T2d, TW, T19, T1a, T1P, T1Q, T1Z, T1g, T1h, T1i, T1C, T1H;
E T2f, Tz, TM, TN, T1S, T1T, T1Y, T1d, T1e, T1f, T1r, T1w, T2e;
{
E T1, T23, Te, Tf, Ti, T21, Tj, T22;
T1 = ri[0];
T23 = ii[0];
Te = ri[WS(rs, 5)];
Tf = Td * Te;
Ti = ii[WS(rs, 5)];
T21 = Td * Ti;
Tj = FMA(Th, Ti, Tf);
Tk = T1 - Tj;
T1c = T1 + Tj;
T22 = FNMS(Th, Te, T21);
T24 = T22 + T23;
T2d = T23 - T22;
}
{
E TR, T1z, T18, T1G, TV, T1B, T14, T1E;
{
E TO, TP, TQ, T1y;
TO = ri[WS(rs, 4)];
TP = T7 * TO;
TQ = ii[WS(rs, 4)];
T1y = T7 * TQ;
TR = FMA(Tb, TQ, TP);
T1z = FNMS(Tb, TO, T1y);
}
{
E T15, T16, T17, T1F;
T15 = ri[WS(rs, 1)];
T16 = T2 * T15;
T17 = ii[WS(rs, 1)];
T1F = T2 * T17;
T18 = FMA(T5, T17, T16);
T1G = FNMS(T5, T15, T1F);
}
{
E TS, TT, TU, T1A;
TS = ri[WS(rs, 9)];
TT = T8 * TS;
TU = ii[WS(rs, 9)];
T1A = T8 * TU;
TV = FMA(Tc, TU, TT);
T1B = FNMS(Tc, TS, T1A);
}
{
E TZ, T10, T13, T1D;
TZ = ri[WS(rs, 6)];
T10 = TY * TZ;
T13 = ii[WS(rs, 6)];
T1D = TY * T13;
T14 = FMA(T12, T13, T10);
T1E = FNMS(T12, TZ, T1D);
}
TW = TR - TV;
T19 = T14 - T18;
T1a = TW + T19;
T1P = T1z + T1B;
T1Q = T1E + T1G;
T1Z = T1P + T1Q;
T1g = TR + TV;
T1h = T14 + T18;
T1i = T1g + T1h;
T1C = T1z - T1B;
T1H = T1E - T1G;
T2f = T1C + T1H;
}
{
E Tq, T1o, TL, T1v, Ty, T1q, TH, T1t;
{
E Tm, Tn, Tp, T1n;
Tm = ri[WS(rs, 2)];
Tn = Tl * Tm;
Tp = ii[WS(rs, 2)];
T1n = Tl * Tp;
Tq = FMA(To, Tp, Tn);
T1o = FNMS(To, Tm, T1n);
}
{
E TI, TJ, TK, T1u;
TI = ri[WS(rs, 3)];
TJ = T3 * TI;
TK = ii[WS(rs, 3)];
T1u = T3 * TK;
TL = FMA(T6, TK, TJ);
T1v = FNMS(T6, TI, T1u);
}
{
E Tt, Tu, Tx, T1p;
Tt = ri[WS(rs, 7)];
Tu = Ts * Tt;
Tx = ii[WS(rs, 7)];
T1p = Ts * Tx;
Ty = FMA(Tw, Tx, Tu);
T1q = FNMS(Tw, Tt, T1p);
}
{
E TC, TD, TG, T1s;
TC = ri[WS(rs, 8)];
TD = TB * TC;
TG = ii[WS(rs, 8)];
T1s = TB * TG;
TH = FMA(TF, TG, TD);
T1t = FNMS(TF, TC, T1s);
}
Tz = Tq - Ty;
TM = TH - TL;
TN = Tz + TM;
T1S = T1o + T1q;
T1T = T1t + T1v;
T1Y = T1S + T1T;
T1d = Tq + Ty;
T1e = TH + TL;
T1f = T1d + T1e;
T1r = T1o - T1q;
T1w = T1t - T1v;
T2e = T1r + T1w;
}
{
E T1l, T1b, T1k, T1J, T1L, T1x, T1I, T1K, T1m;
T1l = TN - T1a;
T1b = TN + T1a;
T1k = FNMS(KP250000000, T1b, Tk);
T1x = T1r - T1w;
T1I = T1C - T1H;
T1J = FMA(KP618033988, T1I, T1x);
T1L = FNMS(KP618033988, T1x, T1I);
ri[WS(rs, 5)] = Tk + T1b;
T1K = FNMS(KP559016994, T1l, T1k);
ri[WS(rs, 7)] = FNMS(KP951056516, T1L, T1K);
ri[WS(rs, 3)] = FMA(KP951056516, T1L, T1K);
T1m = FMA(KP559016994, T1l, T1k);
ri[WS(rs, 9)] = FNMS(KP951056516, T1J, T1m);
ri[WS(rs, 1)] = FMA(KP951056516, T1J, T1m);
}
{
E T2i, T2g, T2h, T2m, T2o, T2k, T2l, T2n, T2j;
T2i = T2e - T2f;
T2g = T2e + T2f;
T2h = FNMS(KP250000000, T2g, T2d);
T2k = Tz - TM;
T2l = TW - T19;
T2m = FMA(KP618033988, T2l, T2k);
T2o = FNMS(KP618033988, T2k, T2l);
ii[WS(rs, 5)] = T2g + T2d;
T2n = FNMS(KP559016994, T2i, T2h);
ii[WS(rs, 3)] = FNMS(KP951056516, T2o, T2n);
ii[WS(rs, 7)] = FMA(KP951056516, T2o, T2n);
T2j = FMA(KP559016994, T2i, T2h);
ii[WS(rs, 1)] = FNMS(KP951056516, T2m, T2j);
ii[WS(rs, 9)] = FMA(KP951056516, T2m, T2j);
}
{
E T1N, T1j, T1M, T1V, T1X, T1R, T1U, T1W, T1O;
T1N = T1f - T1i;
T1j = T1f + T1i;
T1M = FNMS(KP250000000, T1j, T1c);
T1R = T1P - T1Q;
T1U = T1S - T1T;
T1V = FNMS(KP618033988, T1U, T1R);
T1X = FMA(KP618033988, T1R, T1U);
ri[0] = T1c + T1j;
T1W = FMA(KP559016994, T1N, T1M);
ri[WS(rs, 4)] = FNMS(KP951056516, T1X, T1W);
ri[WS(rs, 6)] = FMA(KP951056516, T1X, T1W);
T1O = FNMS(KP559016994, T1N, T1M);
ri[WS(rs, 2)] = FNMS(KP951056516, T1V, T1O);
ri[WS(rs, 8)] = FMA(KP951056516, T1V, T1O);
}
{
E T26, T20, T25, T2a, T2c, T28, T29, T2b, T27;
T26 = T1Y - T1Z;
T20 = T1Y + T1Z;
T25 = FNMS(KP250000000, T20, T24);
T28 = T1g - T1h;
T29 = T1d - T1e;
T2a = FNMS(KP618033988, T29, T28);
T2c = FMA(KP618033988, T28, T29);
ii[0] = T20 + T24;
T2b = FMA(KP559016994, T26, T25);
ii[WS(rs, 4)] = FMA(KP951056516, T2c, T2b);
ii[WS(rs, 6)] = FNMS(KP951056516, T2c, T2b);
T27 = FNMS(KP559016994, T26, T25);
ii[WS(rs, 2)] = FMA(KP951056516, T2a, T27);
ii[WS(rs, 8)] = FNMS(KP951056516, T2a, T27);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, { 48, 28, 66, 0 }, 0, 0, 0 };
void X(codelet_t2_10) (planner *p) {
X(kdft_dit_register) (p, t2_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */
/*
* This function contains 114 FP additions, 80 FP multiplications,
* (or, 76 additions, 42 multiplications, 38 fused multiply/add),
* 63 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) {
E T2, T5, T3, T6, T8, Tm, Tc, Tk, T9, Td, Te, TM, TO, Tg, Tp;
E Tv, Tx, Tr;
{
E T4, Tb, T7, Ta;
T2 = W[0];
T5 = W[1];
T3 = W[2];
T6 = W[3];
T4 = T2 * T3;
Tb = T5 * T3;
T7 = T5 * T6;
Ta = T2 * T6;
T8 = T4 - T7;
Tm = Ta - Tb;
Tc = Ta + Tb;
Tk = T4 + T7;
T9 = W[4];
Td = W[5];
Te = FMA(T8, T9, Tc * Td);
TM = FMA(T3, T9, T6 * Td);
TO = FNMS(T6, T9, T3 * Td);
Tg = FNMS(Tc, T9, T8 * Td);
Tp = FMA(Tk, T9, Tm * Td);
Tv = FMA(T2, T9, T5 * Td);
Tx = FNMS(T5, T9, T2 * Td);
Tr = FNMS(Tm, T9, Tk * Td);
}
{
E Tj, T1S, TX, T1G, TL, TU, TV, T1s, T1t, T1C, T11, T12, T13, T1h, T1k;
E T1Q, Tu, TD, TE, T1v, T1w, T1B, TY, TZ, T10, T1a, T1d, T1P;
{
E T1, T1F, Ti, T1E, Tf, Th;
T1 = ri[0];
T1F = ii[0];
Tf = ri[WS(rs, 5)];
Th = ii[WS(rs, 5)];
Ti = FMA(Te, Tf, Tg * Th);
T1E = FNMS(Tg, Tf, Te * Th);
Tj = T1 - Ti;
T1S = T1F - T1E;
TX = T1 + Ti;
T1G = T1E + T1F;
}
{
E TH, T1f, TT, T1j, TK, T1g, TQ, T1i;
{
E TF, TG, TR, TS;
TF = ri[WS(rs, 4)];
TG = ii[WS(rs, 4)];
TH = FMA(T8, TF, Tc * TG);
T1f = FNMS(Tc, TF, T8 * TG);
TR = ri[WS(rs, 1)];
TS = ii[WS(rs, 1)];
TT = FMA(T2, TR, T5 * TS);
T1j = FNMS(T5, TR, T2 * TS);
}
{
E TI, TJ, TN, TP;
TI = ri[WS(rs, 9)];
TJ = ii[WS(rs, 9)];
TK = FMA(T9, TI, Td * TJ);
T1g = FNMS(Td, TI, T9 * TJ);
TN = ri[WS(rs, 6)];
TP = ii[WS(rs, 6)];
TQ = FMA(TM, TN, TO * TP);
T1i = FNMS(TO, TN, TM * TP);
}
TL = TH - TK;
TU = TQ - TT;
TV = TL + TU;
T1s = T1f + T1g;
T1t = T1i + T1j;
T1C = T1s + T1t;
T11 = TH + TK;
T12 = TQ + TT;
T13 = T11 + T12;
T1h = T1f - T1g;
T1k = T1i - T1j;
T1Q = T1h + T1k;
}
{
E To, T18, TC, T1c, Tt, T19, Tz, T1b;
{
E Tl, Tn, TA, TB;
Tl = ri[WS(rs, 2)];
Tn = ii[WS(rs, 2)];
To = FMA(Tk, Tl, Tm * Tn);
T18 = FNMS(Tm, Tl, Tk * Tn);
TA = ri[WS(rs, 3)];
TB = ii[WS(rs, 3)];
TC = FMA(T3, TA, T6 * TB);
T1c = FNMS(T6, TA, T3 * TB);
}
{
E Tq, Ts, Tw, Ty;
Tq = ri[WS(rs, 7)];
Ts = ii[WS(rs, 7)];
Tt = FMA(Tp, Tq, Tr * Ts);
T19 = FNMS(Tr, Tq, Tp * Ts);
Tw = ri[WS(rs, 8)];
Ty = ii[WS(rs, 8)];
Tz = FMA(Tv, Tw, Tx * Ty);
T1b = FNMS(Tx, Tw, Tv * Ty);
}
Tu = To - Tt;
TD = Tz - TC;
TE = Tu + TD;
T1v = T18 + T19;
T1w = T1b + T1c;
T1B = T1v + T1w;
TY = To + Tt;
TZ = Tz + TC;
T10 = TY + TZ;
T1a = T18 - T19;
T1d = T1b - T1c;
T1P = T1a + T1d;
}
{
E T15, TW, T16, T1m, T1o, T1e, T1l, T1n, T17;
T15 = KP559016994 * (TE - TV);
TW = TE + TV;
T16 = FNMS(KP250000000, TW, Tj);
T1e = T1a - T1d;
T1l = T1h - T1k;
T1m = FMA(KP951056516, T1e, KP587785252 * T1l);
T1o = FNMS(KP587785252, T1e, KP951056516 * T1l);
ri[WS(rs, 5)] = Tj + TW;
T1n = T16 - T15;
ri[WS(rs, 7)] = T1n - T1o;
ri[WS(rs, 3)] = T1n + T1o;
T17 = T15 + T16;
ri[WS(rs, 9)] = T17 - T1m;
ri[WS(rs, 1)] = T17 + T1m;
}
{
E T1R, T1T, T1U, T1Y, T20, T1W, T1X, T1Z, T1V;
T1R = KP559016994 * (T1P - T1Q);
T1T = T1P + T1Q;
T1U = FNMS(KP250000000, T1T, T1S);
T1W = Tu - TD;
T1X = TL - TU;
T1Y = FMA(KP951056516, T1W, KP587785252 * T1X);
T20 = FNMS(KP587785252, T1W, KP951056516 * T1X);
ii[WS(rs, 5)] = T1T + T1S;
T1Z = T1U - T1R;
ii[WS(rs, 3)] = T1Z - T20;
ii[WS(rs, 7)] = T20 + T1Z;
T1V = T1R + T1U;
ii[WS(rs, 1)] = T1V - T1Y;
ii[WS(rs, 9)] = T1Y + T1V;
}
{
E T1q, T14, T1p, T1y, T1A, T1u, T1x, T1z, T1r;
T1q = KP559016994 * (T10 - T13);
T14 = T10 + T13;
T1p = FNMS(KP250000000, T14, TX);
T1u = T1s - T1t;
T1x = T1v - T1w;
T1y = FNMS(KP587785252, T1x, KP951056516 * T1u);
T1A = FMA(KP951056516, T1x, KP587785252 * T1u);
ri[0] = TX + T14;
T1z = T1q + T1p;
ri[WS(rs, 4)] = T1z - T1A;
ri[WS(rs, 6)] = T1z + T1A;
T1r = T1p - T1q;
ri[WS(rs, 2)] = T1r - T1y;
ri[WS(rs, 8)] = T1r + T1y;
}
{
E T1L, T1D, T1K, T1J, T1N, T1H, T1I, T1O, T1M;
T1L = KP559016994 * (T1B - T1C);
T1D = T1B + T1C;
T1K = FNMS(KP250000000, T1D, T1G);
T1H = T11 - T12;
T1I = TY - TZ;
T1J = FNMS(KP587785252, T1I, KP951056516 * T1H);
T1N = FMA(KP951056516, T1I, KP587785252 * T1H);
ii[0] = T1D + T1G;
T1O = T1L + T1K;
ii[WS(rs, 4)] = T1N + T1O;
ii[WS(rs, 6)] = T1O - T1N;
T1M = T1K - T1L;
ii[WS(rs, 2)] = T1J + T1M;
ii[WS(rs, 8)] = T1M - T1J;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, { 76, 42, 38, 0 }, 0, 0, 0 };
void X(codelet_t2_10) (planner *p) {
X(kdft_dit_register) (p, t2_10, &desc);
}
#endif