254 lines
7.3 KiB
C
254 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
/* This file was automatically generated --- DO NOT EDIT */
|
|
/* Generated on Tue Sep 14 10:44:26 EDT 2021 */
|
|
|
|
#include "dft/codelet-dft.h"
|
|
|
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 40 FP additions, 34 FP multiplications,
|
|
* (or, 14 additions, 8 multiplications, 26 fused multiply/add),
|
|
* 31 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
|
|
T1 = ri[0];
|
|
TM = ii[0];
|
|
{
|
|
E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
|
|
T3 = ri[WS(rs, 1)];
|
|
T6 = ii[WS(rs, 1)];
|
|
T2 = W[0];
|
|
T4 = T2 * T3;
|
|
Tw = T2 * T6;
|
|
T9 = ri[WS(rs, 4)];
|
|
Tc = ii[WS(rs, 4)];
|
|
T8 = W[6];
|
|
Ta = T8 * T9;
|
|
Ty = T8 * Tc;
|
|
T5 = W[1];
|
|
T7 = FMA(T5, T6, T4);
|
|
Tx = FNMS(T5, T3, Tw);
|
|
Tb = W[7];
|
|
Td = FMA(Tb, Tc, Ta);
|
|
Tz = FNMS(Tb, T9, Ty);
|
|
Te = T7 + Td;
|
|
TJ = Tx + Tz;
|
|
}
|
|
{
|
|
E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
|
|
Tg = ri[WS(rs, 2)];
|
|
Tj = ii[WS(rs, 2)];
|
|
Tf = W[2];
|
|
Th = Tf * Tg;
|
|
TB = Tf * Tj;
|
|
Tm = ri[WS(rs, 3)];
|
|
Tp = ii[WS(rs, 3)];
|
|
Tl = W[4];
|
|
Tn = Tl * Tm;
|
|
TD = Tl * Tp;
|
|
Ti = W[3];
|
|
Tk = FMA(Ti, Tj, Th);
|
|
TC = FNMS(Ti, Tg, TB);
|
|
To = W[5];
|
|
Tq = FMA(To, Tp, Tn);
|
|
TE = FNMS(To, Tm, TD);
|
|
Tr = Tk + Tq;
|
|
TK = TC + TE;
|
|
}
|
|
{
|
|
E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
|
|
Tu = Te - Tr;
|
|
Ts = Te + Tr;
|
|
Tt = FNMS(KP250000000, Ts, T1);
|
|
TA = Tx - Tz;
|
|
TF = TC - TE;
|
|
TG = FMA(KP618033988, TF, TA);
|
|
TI = FNMS(KP618033988, TA, TF);
|
|
ri[0] = T1 + Ts;
|
|
TH = FNMS(KP559016994, Tu, Tt);
|
|
ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
|
|
ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
|
|
Tv = FMA(KP559016994, Tu, Tt);
|
|
ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
|
|
ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
|
|
}
|
|
{
|
|
E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
|
|
TO = TJ - TK;
|
|
TL = TJ + TK;
|
|
TN = FNMS(KP250000000, TL, TM);
|
|
TQ = T7 - Td;
|
|
TR = Tk - Tq;
|
|
TS = FMA(KP618033988, TR, TQ);
|
|
TU = FNMS(KP618033988, TQ, TR);
|
|
ii[0] = TL + TM;
|
|
TT = FNMS(KP559016994, TO, TN);
|
|
ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
|
|
ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
|
|
TP = FMA(KP559016994, TO, TN);
|
|
ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
|
|
ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 5 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 14, 8, 26, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t1_5) (planner *p) {
|
|
X(kdft_dit_register) (p, t1_5, &desc);
|
|
}
|
|
#else
|
|
|
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
|
|
|
|
/*
|
|
* This function contains 40 FP additions, 28 FP multiplications,
|
|
* (or, 26 additions, 14 multiplications, 14 fused multiply/add),
|
|
* 29 stack variables, 4 constants, and 20 memory accesses
|
|
*/
|
|
#include "dft/scalar/t.h"
|
|
|
|
static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
|
{
|
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
|
{
|
|
INT m;
|
|
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
|
|
E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
|
|
T1 = ri[0];
|
|
TE = ii[0];
|
|
{
|
|
E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
|
|
{
|
|
E T3, T5, T2, T4;
|
|
T3 = ri[WS(rs, 1)];
|
|
T5 = ii[WS(rs, 1)];
|
|
T2 = W[0];
|
|
T4 = W[1];
|
|
T6 = FMA(T2, T3, T4 * T5);
|
|
Ts = FNMS(T4, T3, T2 * T5);
|
|
}
|
|
{
|
|
E Tj, Tl, Ti, Tk;
|
|
Tj = ri[WS(rs, 3)];
|
|
Tl = ii[WS(rs, 3)];
|
|
Ti = W[4];
|
|
Tk = W[5];
|
|
Tm = FMA(Ti, Tj, Tk * Tl);
|
|
Tw = FNMS(Tk, Tj, Ti * Tl);
|
|
}
|
|
{
|
|
E T8, Ta, T7, T9;
|
|
T8 = ri[WS(rs, 4)];
|
|
Ta = ii[WS(rs, 4)];
|
|
T7 = W[6];
|
|
T9 = W[7];
|
|
Tb = FMA(T7, T8, T9 * Ta);
|
|
Tt = FNMS(T9, T8, T7 * Ta);
|
|
}
|
|
{
|
|
E Te, Tg, Td, Tf;
|
|
Te = ri[WS(rs, 2)];
|
|
Tg = ii[WS(rs, 2)];
|
|
Td = W[2];
|
|
Tf = W[3];
|
|
Th = FMA(Td, Te, Tf * Tg);
|
|
Tv = FNMS(Tf, Te, Td * Tg);
|
|
}
|
|
Tu = Ts - Tt;
|
|
Tx = Tv - Tw;
|
|
TJ = Th - Tm;
|
|
TI = T6 - Tb;
|
|
TB = Ts + Tt;
|
|
TC = Tv + Tw;
|
|
TD = TB + TC;
|
|
Tc = T6 + Tb;
|
|
Tn = Th + Tm;
|
|
To = Tc + Tn;
|
|
}
|
|
ri[0] = T1 + To;
|
|
ii[0] = TD + TE;
|
|
{
|
|
E Ty, TA, Tr, Tz, Tp, Tq;
|
|
Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
|
|
TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
|
|
Tp = KP559016994 * (Tc - Tn);
|
|
Tq = FNMS(KP250000000, To, T1);
|
|
Tr = Tp + Tq;
|
|
Tz = Tq - Tp;
|
|
ri[WS(rs, 4)] = Tr - Ty;
|
|
ri[WS(rs, 3)] = Tz + TA;
|
|
ri[WS(rs, 1)] = Tr + Ty;
|
|
ri[WS(rs, 2)] = Tz - TA;
|
|
}
|
|
{
|
|
E TK, TL, TH, TM, TF, TG;
|
|
TK = FMA(KP951056516, TI, KP587785252 * TJ);
|
|
TL = FNMS(KP587785252, TI, KP951056516 * TJ);
|
|
TF = KP559016994 * (TB - TC);
|
|
TG = FNMS(KP250000000, TD, TE);
|
|
TH = TF + TG;
|
|
TM = TG - TF;
|
|
ii[WS(rs, 1)] = TH - TK;
|
|
ii[WS(rs, 3)] = TM - TL;
|
|
ii[WS(rs, 4)] = TK + TH;
|
|
ii[WS(rs, 2)] = TL + TM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const tw_instr twinstr[] = {
|
|
{ TW_FULL, 0, 5 },
|
|
{ TW_NEXT, 1, 0 }
|
|
};
|
|
|
|
static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 26, 14, 14, 0 }, 0, 0, 0 };
|
|
|
|
void X(codelet_t1_5) (planner *p) {
|
|
X(kdft_dit_register) (p, t1_5, &desc);
|
|
}
|
|
#endif
|