iup-stack/fftw/dft/scalar/codelets/t1_20.c

1051 lines
27 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:29 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */
/*
* This function contains 246 FP additions, 148 FP multiplications,
* (or, 136 additions, 38 multiplications, 110 fused multiply/add),
* 61 stack variables, 4 constants, and 80 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) {
E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T40, T4b, T2v, T3v, T3i;
E T3F, T27, T2f, T3W, T4f, T2R, T3z, T3a, T3J, T1G, T2e, T3T, T4e, T2K, T3y;
E T33, T3I, T1e, T2c, T43, T4c, T2C, T3w, T3p, T3G;
{
E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5;
T1 = ri[0];
T4q = ii[0];
T3 = ri[WS(rs, 10)];
T6 = ii[WS(rs, 10)];
T2 = W[18];
T4 = T2 * T3;
T4o = T2 * T6;
T5 = W[19];
T7 = FMA(T5, T6, T4);
T4p = FNMS(T5, T3, T4o);
T8 = T1 + T7;
T4N = T4q - T4p;
T2i = T1 - T7;
T4r = T4p + T4q;
}
{
E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf;
Ta = ri[WS(rs, 5)];
Td = ii[WS(rs, 5)];
T9 = W[8];
Tb = T9 * Ta;
T2j = T9 * Td;
Tg = ri[WS(rs, 15)];
Tj = ii[WS(rs, 15)];
Tf = W[28];
Th = Tf * Tg;
T2l = Tf * Tj;
{
E Te, T2k, Tk, T2m, Tc, Ti;
Tc = W[9];
Te = FMA(Tc, Td, Tb);
T2k = FNMS(Tc, Ta, T2j);
Ti = W[29];
Tk = FMA(Ti, Tj, Th);
T2m = FNMS(Ti, Tg, T2l);
Tl = Te + Tk;
T4O = Te - Tk;
T2n = T2k - T2m;
T4n = T2k + T2m;
}
}
{
E Ts, T3d, TL, T2t, Ty, T3f, TF, T2r;
{
E To, Tr, Tp, T3c, Tn, Tq;
To = ri[WS(rs, 4)];
Tr = ii[WS(rs, 4)];
Tn = W[6];
Tp = Tn * To;
T3c = Tn * Tr;
Tq = W[7];
Ts = FMA(Tq, Tr, Tp);
T3d = FNMS(Tq, To, T3c);
}
{
E TH, TK, TI, T2s, TG, TJ;
TH = ri[WS(rs, 19)];
TK = ii[WS(rs, 19)];
TG = W[36];
TI = TG * TH;
T2s = TG * TK;
TJ = W[37];
TL = FMA(TJ, TK, TI);
T2t = FNMS(TJ, TH, T2s);
}
{
E Tu, Tx, Tv, T3e, Tt, Tw;
Tu = ri[WS(rs, 14)];
Tx = ii[WS(rs, 14)];
Tt = W[26];
Tv = Tt * Tu;
T3e = Tt * Tx;
Tw = W[27];
Ty = FMA(Tw, Tx, Tv);
T3f = FNMS(Tw, Tu, T3e);
}
{
E TB, TE, TC, T2q, TA, TD;
TB = ri[WS(rs, 9)];
TE = ii[WS(rs, 9)];
TA = W[16];
TC = TA * TB;
T2q = TA * TE;
TD = W[17];
TF = FMA(TD, TE, TC);
T2r = FNMS(TD, TB, T2q);
}
{
E Tz, TM, T3Y, T3Z;
Tz = Ts + Ty;
TM = TF + TL;
TN = Tz - TM;
T2b = Tz + TM;
T3Y = T3d + T3f;
T3Z = T2r + T2t;
T40 = T3Y - T3Z;
T4b = T3Y + T3Z;
}
{
E T2p, T2u, T3g, T3h;
T2p = Ts - Ty;
T2u = T2r - T2t;
T2v = T2p - T2u;
T3v = T2p + T2u;
T3g = T3d - T3f;
T3h = TF - TL;
T3i = T3g + T3h;
T3F = T3g - T3h;
}
}
{
E T1M, T35, T25, T2P, T1S, T37, T1Z, T2N;
{
E T1I, T1L, T1J, T34, T1H, T1K;
T1I = ri[WS(rs, 12)];
T1L = ii[WS(rs, 12)];
T1H = W[22];
T1J = T1H * T1I;
T34 = T1H * T1L;
T1K = W[23];
T1M = FMA(T1K, T1L, T1J);
T35 = FNMS(T1K, T1I, T34);
}
{
E T21, T24, T22, T2O, T20, T23;
T21 = ri[WS(rs, 7)];
T24 = ii[WS(rs, 7)];
T20 = W[12];
T22 = T20 * T21;
T2O = T20 * T24;
T23 = W[13];
T25 = FMA(T23, T24, T22);
T2P = FNMS(T23, T21, T2O);
}
{
E T1O, T1R, T1P, T36, T1N, T1Q;
T1O = ri[WS(rs, 2)];
T1R = ii[WS(rs, 2)];
T1N = W[2];
T1P = T1N * T1O;
T36 = T1N * T1R;
T1Q = W[3];
T1S = FMA(T1Q, T1R, T1P);
T37 = FNMS(T1Q, T1O, T36);
}
{
E T1V, T1Y, T1W, T2M, T1U, T1X;
T1V = ri[WS(rs, 17)];
T1Y = ii[WS(rs, 17)];
T1U = W[32];
T1W = T1U * T1V;
T2M = T1U * T1Y;
T1X = W[33];
T1Z = FMA(T1X, T1Y, T1W);
T2N = FNMS(T1X, T1V, T2M);
}
{
E T1T, T26, T3U, T3V;
T1T = T1M + T1S;
T26 = T1Z + T25;
T27 = T1T - T26;
T2f = T1T + T26;
T3U = T35 + T37;
T3V = T2N + T2P;
T3W = T3U - T3V;
T4f = T3U + T3V;
}
{
E T2L, T2Q, T38, T39;
T2L = T1M - T1S;
T2Q = T2N - T2P;
T2R = T2L - T2Q;
T3z = T2L + T2Q;
T38 = T35 - T37;
T39 = T1Z - T25;
T3a = T38 + T39;
T3J = T38 - T39;
}
}
{
E T1l, T2Y, T1E, T2I, T1r, T30, T1y, T2G;
{
E T1h, T1k, T1i, T2X, T1g, T1j;
T1h = ri[WS(rs, 8)];
T1k = ii[WS(rs, 8)];
T1g = W[14];
T1i = T1g * T1h;
T2X = T1g * T1k;
T1j = W[15];
T1l = FMA(T1j, T1k, T1i);
T2Y = FNMS(T1j, T1h, T2X);
}
{
E T1A, T1D, T1B, T2H, T1z, T1C;
T1A = ri[WS(rs, 3)];
T1D = ii[WS(rs, 3)];
T1z = W[4];
T1B = T1z * T1A;
T2H = T1z * T1D;
T1C = W[5];
T1E = FMA(T1C, T1D, T1B);
T2I = FNMS(T1C, T1A, T2H);
}
{
E T1n, T1q, T1o, T2Z, T1m, T1p;
T1n = ri[WS(rs, 18)];
T1q = ii[WS(rs, 18)];
T1m = W[34];
T1o = T1m * T1n;
T2Z = T1m * T1q;
T1p = W[35];
T1r = FMA(T1p, T1q, T1o);
T30 = FNMS(T1p, T1n, T2Z);
}
{
E T1u, T1x, T1v, T2F, T1t, T1w;
T1u = ri[WS(rs, 13)];
T1x = ii[WS(rs, 13)];
T1t = W[24];
T1v = T1t * T1u;
T2F = T1t * T1x;
T1w = W[25];
T1y = FMA(T1w, T1x, T1v);
T2G = FNMS(T1w, T1u, T2F);
}
{
E T1s, T1F, T3R, T3S;
T1s = T1l + T1r;
T1F = T1y + T1E;
T1G = T1s - T1F;
T2e = T1s + T1F;
T3R = T2Y + T30;
T3S = T2G + T2I;
T3T = T3R - T3S;
T4e = T3R + T3S;
}
{
E T2E, T2J, T31, T32;
T2E = T1l - T1r;
T2J = T2G - T2I;
T2K = T2E - T2J;
T3y = T2E + T2J;
T31 = T2Y - T30;
T32 = T1y - T1E;
T33 = T31 + T32;
T3I = T31 - T32;
}
}
{
E TT, T3k, T1c, T2A, TZ, T3m, T16, T2y;
{
E TP, TS, TQ, T3j, TO, TR;
TP = ri[WS(rs, 16)];
TS = ii[WS(rs, 16)];
TO = W[30];
TQ = TO * TP;
T3j = TO * TS;
TR = W[31];
TT = FMA(TR, TS, TQ);
T3k = FNMS(TR, TP, T3j);
}
{
E T18, T1b, T19, T2z, T17, T1a;
T18 = ri[WS(rs, 11)];
T1b = ii[WS(rs, 11)];
T17 = W[20];
T19 = T17 * T18;
T2z = T17 * T1b;
T1a = W[21];
T1c = FMA(T1a, T1b, T19);
T2A = FNMS(T1a, T18, T2z);
}
{
E TV, TY, TW, T3l, TU, TX;
TV = ri[WS(rs, 6)];
TY = ii[WS(rs, 6)];
TU = W[10];
TW = TU * TV;
T3l = TU * TY;
TX = W[11];
TZ = FMA(TX, TY, TW);
T3m = FNMS(TX, TV, T3l);
}
{
E T12, T15, T13, T2x, T11, T14;
T12 = ri[WS(rs, 1)];
T15 = ii[WS(rs, 1)];
T11 = W[0];
T13 = T11 * T12;
T2x = T11 * T15;
T14 = W[1];
T16 = FMA(T14, T15, T13);
T2y = FNMS(T14, T12, T2x);
}
{
E T10, T1d, T41, T42;
T10 = TT + TZ;
T1d = T16 + T1c;
T1e = T10 - T1d;
T2c = T10 + T1d;
T41 = T3k + T3m;
T42 = T2y + T2A;
T43 = T41 - T42;
T4c = T41 + T42;
}
{
E T2w, T2B, T3n, T3o;
T2w = TT - TZ;
T2B = T2y - T2A;
T2C = T2w - T2B;
T3w = T2w + T2B;
T3n = T3k - T3m;
T3o = T16 - T1c;
T3p = T3n + T3o;
T3G = T3n - T3o;
}
}
{
E T45, T47, Tm, T29, T3O, T3P, T46, T3Q;
{
E T3X, T44, T1f, T28;
T3X = T3T - T3W;
T44 = T40 - T43;
T45 = FNMS(KP618033988, T44, T3X);
T47 = FMA(KP618033988, T3X, T44);
Tm = T8 - Tl;
T1f = TN + T1e;
T28 = T1G + T27;
T29 = T1f + T28;
T3O = FNMS(KP250000000, T29, Tm);
T3P = T1f - T28;
}
ri[WS(rs, 10)] = Tm + T29;
T46 = FMA(KP559016994, T3P, T3O);
ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46);
ri[WS(rs, 6)] = FMA(KP951056516, T47, T46);
T3Q = FNMS(KP559016994, T3P, T3O);
ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q);
ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q);
}
{
E T4K, T4M, T4B, T4E, T4F, T4G, T4L, T4H;
{
E T4I, T4J, T4C, T4D;
T4I = T1G - T27;
T4J = TN - T1e;
T4K = FNMS(KP618033988, T4J, T4I);
T4M = FMA(KP618033988, T4I, T4J);
T4B = T4r - T4n;
T4C = T40 + T43;
T4D = T3T + T3W;
T4E = T4C + T4D;
T4F = FNMS(KP250000000, T4E, T4B);
T4G = T4C - T4D;
}
ii[WS(rs, 10)] = T4E + T4B;
T4L = FMA(KP559016994, T4G, T4F);
ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L);
ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L);
T4H = FNMS(KP559016994, T4G, T4F);
ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H);
ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H);
}
{
E T4h, T4j, T2a, T2h, T48, T49, T4i, T4a;
{
E T4d, T4g, T2d, T2g;
T4d = T4b - T4c;
T4g = T4e - T4f;
T4h = FMA(KP618033988, T4g, T4d);
T4j = FNMS(KP618033988, T4d, T4g);
T2a = T8 + Tl;
T2d = T2b + T2c;
T2g = T2e + T2f;
T2h = T2d + T2g;
T48 = FNMS(KP250000000, T2h, T2a);
T49 = T2d - T2g;
}
ri[0] = T2a + T2h;
T4i = FNMS(KP559016994, T49, T48);
ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i);
ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i);
T4a = FMA(KP559016994, T49, T48);
ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a);
ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a);
}
{
E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v;
{
E T4w, T4x, T4k, T4l;
T4w = T2b - T2c;
T4x = T2e - T2f;
T4y = FMA(KP618033988, T4x, T4w);
T4A = FNMS(KP618033988, T4w, T4x);
T4s = T4n + T4r;
T4k = T4b + T4c;
T4l = T4e + T4f;
T4m = T4k + T4l;
T4t = FNMS(KP250000000, T4m, T4s);
T4u = T4k - T4l;
}
ii[0] = T4m + T4s;
T4z = FNMS(KP559016994, T4u, T4t);
ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z);
ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z);
T4v = FMA(KP559016994, T4u, T4t);
ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v);
ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v);
}
{
E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W;
{
E T3b, T3q, T2D, T2S;
T3b = T33 - T3a;
T3q = T3i - T3p;
T3r = FNMS(KP618033988, T3q, T3b);
T3t = FMA(KP618033988, T3b, T3q);
T2o = T2i - T2n;
T2D = T2v + T2C;
T2S = T2K + T2R;
T2T = T2D + T2S;
T2U = FNMS(KP250000000, T2T, T2o);
T2V = T2D - T2S;
}
ri[WS(rs, 15)] = T2o + T2T;
T3s = FMA(KP559016994, T2V, T2U);
ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s);
ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s);
T2W = FNMS(KP559016994, T2V, T2U);
ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W);
ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W);
}
{
E T5a, T5c, T51, T54, T55, T56, T5b, T57;
{
E T58, T59, T52, T53;
T58 = T2K - T2R;
T59 = T2v - T2C;
T5a = FNMS(KP618033988, T59, T58);
T5c = FMA(KP618033988, T58, T59);
T51 = T4O + T4N;
T52 = T3i + T3p;
T53 = T33 + T3a;
T54 = T52 + T53;
T55 = FNMS(KP250000000, T54, T51);
T56 = T52 - T53;
}
ii[WS(rs, 15)] = T54 + T51;
T5b = FMA(KP559016994, T56, T55);
ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b);
ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b);
T57 = FNMS(KP559016994, T56, T55);
ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57);
ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57);
}
{
E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E;
{
E T3H, T3K, T3x, T3A;
T3H = T3F - T3G;
T3K = T3I - T3J;
T3L = FMA(KP618033988, T3K, T3H);
T3N = FNMS(KP618033988, T3H, T3K);
T3u = T2i + T2n;
T3x = T3v + T3w;
T3A = T3y + T3z;
T3B = T3x + T3A;
T3C = FNMS(KP250000000, T3B, T3u);
T3D = T3x - T3A;
}
ri[WS(rs, 5)] = T3u + T3B;
T3M = FNMS(KP559016994, T3D, T3C);
ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M);
ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M);
T3E = FMA(KP559016994, T3D, T3C);
ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E);
}
{
E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V;
{
E T4W, T4X, T4Q, T4R;
T4W = T3v - T3w;
T4X = T3y - T3z;
T4Y = FMA(KP618033988, T4X, T4W);
T50 = FNMS(KP618033988, T4W, T4X);
T4P = T4N - T4O;
T4Q = T3F + T3G;
T4R = T3I + T3J;
T4S = T4Q + T4R;
T4T = FNMS(KP250000000, T4S, T4P);
T4U = T4Q - T4R;
}
ii[WS(rs, 5)] = T4S + T4P;
T4Z = FNMS(KP559016994, T4U, T4T);
ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z);
ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z);
T4V = FMA(KP559016994, T4U, T4T);
ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V);
ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 20 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, { 136, 38, 110, 0 }, 0, 0, 0 };
void X(codelet_t1_20) (planner *p) {
X(kdft_dit_register) (p, t1_20, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */
/*
* This function contains 246 FP additions, 124 FP multiplications,
* (or, 184 additions, 62 multiplications, 62 fused multiply/add),
* 85 stack variables, 4 constants, and 80 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) {
E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D;
E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G;
E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e;
E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B;
{
E T1, T3O, T6, T3N, Tc, T2n, Th, T2o;
T1 = ri[0];
T3O = ii[0];
{
E T3, T5, T2, T4;
T3 = ri[WS(rs, 10)];
T5 = ii[WS(rs, 10)];
T2 = W[18];
T4 = W[19];
T6 = FMA(T2, T3, T4 * T5);
T3N = FNMS(T4, T3, T2 * T5);
}
{
E T9, Tb, T8, Ta;
T9 = ri[WS(rs, 5)];
Tb = ii[WS(rs, 5)];
T8 = W[8];
Ta = W[9];
Tc = FMA(T8, T9, Ta * Tb);
T2n = FNMS(Ta, T9, T8 * Tb);
}
{
E Te, Tg, Td, Tf;
Te = ri[WS(rs, 15)];
Tg = ii[WS(rs, 15)];
Td = W[28];
Tf = W[29];
Th = FMA(Td, Te, Tf * Tg);
T2o = FNMS(Tf, Te, Td * Tg);
}
{
E T7, Ti, T4e, T4f;
T7 = T1 + T6;
Ti = Tc + Th;
Tj = T7 - Ti;
T1R = T7 + Ti;
T4e = T3O - T3N;
T4f = Tc - Th;
T4g = T4e - T4f;
T4p = T4f + T4e;
}
{
E T2m, T2p, T3M, T3P;
T2m = T1 - T6;
T2p = T2n - T2o;
T2q = T2m - T2p;
T37 = T2m + T2p;
T3M = T2n + T2o;
T3P = T3N + T3O;
T3Q = T3M + T3P;
T42 = T3P - T3M;
}
}
{
E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26;
E T2H;
{
E T19, T1Z, T1e, T20;
{
E T16, T18, T15, T17;
T16 = ri[WS(rs, 8)];
T18 = ii[WS(rs, 8)];
T15 = W[14];
T17 = W[15];
T19 = FMA(T15, T16, T17 * T18);
T1Z = FNMS(T17, T16, T15 * T18);
}
{
E T1b, T1d, T1a, T1c;
T1b = ri[WS(rs, 18)];
T1d = ii[WS(rs, 18)];
T1a = W[34];
T1c = W[35];
T1e = FMA(T1a, T1b, T1c * T1d);
T20 = FNMS(T1c, T1b, T1a * T1d);
}
T1f = T19 + T1e;
T3g = T1Z + T20;
T21 = T1Z - T20;
T2C = T19 - T1e;
}
{
E T1H, T2I, T1M, T2J;
{
E T1E, T1G, T1D, T1F;
T1E = ri[WS(rs, 17)];
T1G = ii[WS(rs, 17)];
T1D = W[32];
T1F = W[33];
T1H = FMA(T1D, T1E, T1F * T1G);
T2I = FNMS(T1F, T1E, T1D * T1G);
}
{
E T1J, T1L, T1I, T1K;
T1J = ri[WS(rs, 7)];
T1L = ii[WS(rs, 7)];
T1I = W[12];
T1K = W[13];
T1M = FMA(T1I, T1J, T1K * T1L);
T2J = FNMS(T1K, T1J, T1I * T1L);
}
T1N = T1H + T1M;
T3k = T2I + T2J;
T27 = T1H - T1M;
T2K = T2I - T2J;
}
{
E T1k, T2D, T1p, T2E;
{
E T1h, T1j, T1g, T1i;
T1h = ri[WS(rs, 13)];
T1j = ii[WS(rs, 13)];
T1g = W[24];
T1i = W[25];
T1k = FMA(T1g, T1h, T1i * T1j);
T2D = FNMS(T1i, T1h, T1g * T1j);
}
{
E T1m, T1o, T1l, T1n;
T1m = ri[WS(rs, 3)];
T1o = ii[WS(rs, 3)];
T1l = W[4];
T1n = W[5];
T1p = FMA(T1l, T1m, T1n * T1o);
T2E = FNMS(T1n, T1m, T1l * T1o);
}
T1q = T1k + T1p;
T3h = T2D + T2E;
T22 = T1k - T1p;
T2F = T2D - T2E;
}
{
E T1w, T24, T1B, T25;
{
E T1t, T1v, T1s, T1u;
T1t = ri[WS(rs, 12)];
T1v = ii[WS(rs, 12)];
T1s = W[22];
T1u = W[23];
T1w = FMA(T1s, T1t, T1u * T1v);
T24 = FNMS(T1u, T1t, T1s * T1v);
}
{
E T1y, T1A, T1x, T1z;
T1y = ri[WS(rs, 2)];
T1A = ii[WS(rs, 2)];
T1x = W[2];
T1z = W[3];
T1B = FMA(T1x, T1y, T1z * T1A);
T25 = FNMS(T1z, T1y, T1x * T1A);
}
T1C = T1w + T1B;
T3j = T24 + T25;
T26 = T24 - T25;
T2H = T1w - T1B;
}
T1r = T1f - T1q;
T1O = T1C - T1N;
T1P = T1r + T1O;
T3i = T3g - T3h;
T3l = T3j - T3k;
T44 = T3i + T3l;
T3D = T3g + T3h;
T3E = T3j + T3k;
T3K = T3D + T3E;
T1V = T1f + T1q;
T1W = T1C + T1N;
T1X = T1V + T1W;
T23 = T21 + T22;
T28 = T26 + T27;
T4r = T23 + T28;
T2W = T21 - T22;
T2X = T26 - T27;
T4c = T2W + T2X;
T33 = T2C + T2F;
T34 = T2H + T2K;
T35 = T33 + T34;
T2G = T2C - T2F;
T2L = T2H - T2K;
T2M = T2G + T2L;
}
{
E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h;
E T2w;
{
E To, T2a, Tt, T2b;
{
E Tl, Tn, Tk, Tm;
Tl = ri[WS(rs, 4)];
Tn = ii[WS(rs, 4)];
Tk = W[6];
Tm = W[7];
To = FMA(Tk, Tl, Tm * Tn);
T2a = FNMS(Tm, Tl, Tk * Tn);
}
{
E Tq, Ts, Tp, Tr;
Tq = ri[WS(rs, 14)];
Ts = ii[WS(rs, 14)];
Tp = W[26];
Tr = W[27];
Tt = FMA(Tp, Tq, Tr * Ts);
T2b = FNMS(Tr, Tq, Tp * Ts);
}
Tu = To + Tt;
T3n = T2a + T2b;
T2c = T2a - T2b;
T2r = To - Tt;
}
{
E TW, T2x, T11, T2y;
{
E TT, TV, TS, TU;
TT = ri[WS(rs, 1)];
TV = ii[WS(rs, 1)];
TS = W[0];
TU = W[1];
TW = FMA(TS, TT, TU * TV);
T2x = FNMS(TU, TT, TS * TV);
}
{
E TY, T10, TX, TZ;
TY = ri[WS(rs, 11)];
T10 = ii[WS(rs, 11)];
TX = W[20];
TZ = W[21];
T11 = FMA(TX, TY, TZ * T10);
T2y = FNMS(TZ, TY, TX * T10);
}
T12 = TW + T11;
T3r = T2x + T2y;
T2i = TW - T11;
T2z = T2x - T2y;
}
{
E Tz, T2s, TE, T2t;
{
E Tw, Ty, Tv, Tx;
Tw = ri[WS(rs, 9)];
Ty = ii[WS(rs, 9)];
Tv = W[16];
Tx = W[17];
Tz = FMA(Tv, Tw, Tx * Ty);
T2s = FNMS(Tx, Tw, Tv * Ty);
}
{
E TB, TD, TA, TC;
TB = ri[WS(rs, 19)];
TD = ii[WS(rs, 19)];
TA = W[36];
TC = W[37];
TE = FMA(TA, TB, TC * TD);
T2t = FNMS(TC, TB, TA * TD);
}
TF = Tz + TE;
T3o = T2s + T2t;
T2d = Tz - TE;
T2u = T2s - T2t;
}
{
E TL, T2f, TQ, T2g;
{
E TI, TK, TH, TJ;
TI = ri[WS(rs, 16)];
TK = ii[WS(rs, 16)];
TH = W[30];
TJ = W[31];
TL = FMA(TH, TI, TJ * TK);
T2f = FNMS(TJ, TI, TH * TK);
}
{
E TN, TP, TM, TO;
TN = ri[WS(rs, 6)];
TP = ii[WS(rs, 6)];
TM = W[10];
TO = W[11];
TQ = FMA(TM, TN, TO * TP);
T2g = FNMS(TO, TN, TM * TP);
}
TR = TL + TQ;
T3q = T2f + T2g;
T2h = T2f - T2g;
T2w = TL - TQ;
}
TG = Tu - TF;
T13 = TR - T12;
T14 = TG + T13;
T3p = T3n - T3o;
T3s = T3q - T3r;
T43 = T3p + T3s;
T3A = T3n + T3o;
T3B = T3q + T3r;
T3J = T3A + T3B;
T1S = Tu + TF;
T1T = TR + T12;
T1U = T1S + T1T;
T2e = T2c + T2d;
T2j = T2h + T2i;
T4q = T2e + T2j;
T2T = T2c - T2d;
T2U = T2h - T2i;
T4b = T2T + T2U;
T30 = T2r + T2u;
T31 = T2w + T2z;
T32 = T30 + T31;
T2v = T2r - T2u;
T2A = T2w - T2z;
T2B = T2v + T2A;
}
{
E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f;
T3e = KP559016994 * (T14 - T1P);
T1Q = T14 + T1P;
T3d = FNMS(KP250000000, T1Q, Tj);
T3m = T3i - T3l;
T3t = T3p - T3s;
T3u = FNMS(KP587785252, T3t, KP951056516 * T3m);
T3w = FMA(KP951056516, T3t, KP587785252 * T3m);
ri[WS(rs, 10)] = Tj + T1Q;
T3v = T3e + T3d;
ri[WS(rs, 14)] = T3v - T3w;
ri[WS(rs, 6)] = T3v + T3w;
T3f = T3d - T3e;
ri[WS(rs, 2)] = T3f - T3u;
ri[WS(rs, 18)] = T3f + T3u;
}
{
E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48;
T47 = KP559016994 * (T43 - T44);
T45 = T43 + T44;
T46 = FNMS(KP250000000, T45, T42);
T3Z = T1r - T1O;
T40 = TG - T13;
T41 = FNMS(KP587785252, T40, KP951056516 * T3Z);
T4a = FMA(KP951056516, T40, KP587785252 * T3Z);
ii[WS(rs, 10)] = T45 + T42;
T49 = T47 + T46;
ii[WS(rs, 6)] = T49 - T4a;
ii[WS(rs, 14)] = T4a + T49;
T48 = T46 - T47;
ii[WS(rs, 2)] = T41 + T48;
ii[WS(rs, 18)] = T48 - T41;
}
{
E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z;
T3x = KP559016994 * (T1U - T1X);
T1Y = T1U + T1X;
T3y = FNMS(KP250000000, T1Y, T1R);
T3C = T3A - T3B;
T3F = T3D - T3E;
T3G = FMA(KP951056516, T3C, KP587785252 * T3F);
T3I = FNMS(KP587785252, T3C, KP951056516 * T3F);
ri[0] = T1R + T1Y;
T3H = T3y - T3x;
ri[WS(rs, 12)] = T3H - T3I;
ri[WS(rs, 8)] = T3H + T3I;
T3z = T3x + T3y;
ri[WS(rs, 4)] = T3z - T3G;
ri[WS(rs, 16)] = T3z + T3G;
}
{
E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W;
T3U = KP559016994 * (T3J - T3K);
T3L = T3J + T3K;
T3V = FNMS(KP250000000, T3L, T3Q);
T3R = T1S - T1T;
T3S = T1V - T1W;
T3T = FMA(KP951056516, T3R, KP587785252 * T3S);
T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S);
ii[0] = T3L + T3Q;
T3X = T3V - T3U;
ii[WS(rs, 8)] = T3X - T3Y;
ii[WS(rs, 12)] = T3Y + T3X;
T3W = T3U + T3V;
ii[WS(rs, 4)] = T3T + T3W;
ii[WS(rs, 16)] = T3W - T3T;
}
{
E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q;
T2P = KP559016994 * (T2B - T2M);
T2N = T2B + T2M;
T2O = FNMS(KP250000000, T2N, T2q);
T29 = T23 - T28;
T2k = T2e - T2j;
T2l = FNMS(KP587785252, T2k, KP951056516 * T29);
T2R = FMA(KP951056516, T2k, KP587785252 * T29);
ri[WS(rs, 15)] = T2q + T2N;
T2S = T2P + T2O;
ri[WS(rs, 11)] = T2R + T2S;
ri[WS(rs, 19)] = T2S - T2R;
T2Q = T2O - T2P;
ri[WS(rs, 3)] = T2l + T2Q;
ri[WS(rs, 7)] = T2Q - T2l;
}
{
E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v;
T4u = KP559016994 * (T4q - T4r);
T4s = T4q + T4r;
T4t = FNMS(KP250000000, T4s, T4p);
T4w = T2G - T2L;
T4x = T2v - T2A;
T4y = FNMS(KP587785252, T4x, KP951056516 * T4w);
T4A = FMA(KP951056516, T4x, KP587785252 * T4w);
ii[WS(rs, 15)] = T4s + T4p;
T4z = T4u + T4t;
ii[WS(rs, 11)] = T4z - T4A;
ii[WS(rs, 19)] = T4A + T4z;
T4v = T4t - T4u;
ii[WS(rs, 3)] = T4v - T4y;
ii[WS(rs, 7)] = T4y + T4v;
}
{
E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a;
T36 = KP559016994 * (T32 - T35);
T38 = T32 + T35;
T39 = FNMS(KP250000000, T38, T37);
T2V = T2T - T2U;
T2Y = T2W - T2X;
T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y);
ri[WS(rs, 5)] = T37 + T38;
T3c = T39 - T36;
ri[WS(rs, 13)] = T3b + T3c;
ri[WS(rs, 17)] = T3c - T3b;
T3a = T36 + T39;
ri[WS(rs, 1)] = T2Z + T3a;
ri[WS(rs, 9)] = T3a - T2Z;
}
{
E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j;
T4d = KP559016994 * (T4b - T4c);
T4h = T4b + T4c;
T4i = FNMS(KP250000000, T4h, T4g);
T4k = T30 - T31;
T4l = T33 - T34;
T4m = FMA(KP951056516, T4k, KP587785252 * T4l);
T4o = FNMS(KP587785252, T4k, KP951056516 * T4l);
ii[WS(rs, 5)] = T4h + T4g;
T4n = T4i - T4d;
ii[WS(rs, 13)] = T4n - T4o;
ii[WS(rs, 17)] = T4o + T4n;
T4j = T4d + T4i;
ii[WS(rs, 1)] = T4j - T4m;
ii[WS(rs, 9)] = T4m + T4j;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 20 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, { 184, 62, 62, 0 }, 0, 0, 0 };
void X(codelet_t1_20) (planner *p) {
X(kdft_dit_register) (p, t1_20, &desc);
}
#endif