iup-stack/fftw/dft/scalar/codelets/n1_5.c

195 lines
6.1 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
/*
* This function contains 32 FP additions, 18 FP multiplications,
* (or, 14 additions, 0 multiplications, 18 fused multiply/add),
* 21 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
E T1, Tl, T8, Tt, Ta, Ts, Te, Tq, Th, To;
T1 = ri[0];
Tl = ii[0];
{
E T2, T3, T4, T5, T6, T7;
T2 = ri[WS(is, 1)];
T3 = ri[WS(is, 4)];
T4 = T2 + T3;
T5 = ri[WS(is, 2)];
T6 = ri[WS(is, 3)];
T7 = T5 + T6;
T8 = T4 + T7;
Tt = T5 - T6;
Ta = T4 - T7;
Ts = T2 - T3;
}
{
E Tc, Td, Tm, Tf, Tg, Tn;
Tc = ii[WS(is, 1)];
Td = ii[WS(is, 4)];
Tm = Tc + Td;
Tf = ii[WS(is, 2)];
Tg = ii[WS(is, 3)];
Tn = Tf + Tg;
Te = Tc - Td;
Tq = Tm - Tn;
Th = Tf - Tg;
To = Tm + Tn;
}
ro[0] = T1 + T8;
io[0] = Tl + To;
{
E Ti, Tk, Tb, Tj, T9;
Ti = FMA(KP618033988, Th, Te);
Tk = FNMS(KP618033988, Te, Th);
T9 = FNMS(KP250000000, T8, T1);
Tb = FMA(KP559016994, Ta, T9);
Tj = FNMS(KP559016994, Ta, T9);
ro[WS(os, 4)] = FNMS(KP951056516, Ti, Tb);
ro[WS(os, 3)] = FMA(KP951056516, Tk, Tj);
ro[WS(os, 1)] = FMA(KP951056516, Ti, Tb);
ro[WS(os, 2)] = FNMS(KP951056516, Tk, Tj);
}
{
E Tu, Tw, Tr, Tv, Tp;
Tu = FMA(KP618033988, Tt, Ts);
Tw = FNMS(KP618033988, Ts, Tt);
Tp = FNMS(KP250000000, To, Tl);
Tr = FMA(KP559016994, Tq, Tp);
Tv = FNMS(KP559016994, Tq, Tp);
io[WS(os, 1)] = FNMS(KP951056516, Tu, Tr);
io[WS(os, 3)] = FNMS(KP951056516, Tw, Tv);
io[WS(os, 4)] = FMA(KP951056516, Tu, Tr);
io[WS(os, 2)] = FMA(KP951056516, Tw, Tv);
}
}
}
}
static const kdft_desc desc = { 5, "n1_5", { 14, 0, 18, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
/*
* This function contains 32 FP additions, 12 FP multiplications,
* (or, 26 additions, 6 multiplications, 6 fused multiply/add),
* 21 stack variables, 4 constants, and 20 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
E T1, To, T8, Tt, T9, Ts, Te, Tp, Th, Tn;
T1 = ri[0];
To = ii[0];
{
E T2, T3, T4, T5, T6, T7;
T2 = ri[WS(is, 1)];
T3 = ri[WS(is, 4)];
T4 = T2 + T3;
T5 = ri[WS(is, 2)];
T6 = ri[WS(is, 3)];
T7 = T5 + T6;
T8 = T4 + T7;
Tt = T5 - T6;
T9 = KP559016994 * (T4 - T7);
Ts = T2 - T3;
}
{
E Tc, Td, Tl, Tf, Tg, Tm;
Tc = ii[WS(is, 1)];
Td = ii[WS(is, 4)];
Tl = Tc + Td;
Tf = ii[WS(is, 2)];
Tg = ii[WS(is, 3)];
Tm = Tf + Tg;
Te = Tc - Td;
Tp = Tl + Tm;
Th = Tf - Tg;
Tn = KP559016994 * (Tl - Tm);
}
ro[0] = T1 + T8;
io[0] = To + Tp;
{
E Ti, Tk, Tb, Tj, Ta;
Ti = FMA(KP951056516, Te, KP587785252 * Th);
Tk = FNMS(KP587785252, Te, KP951056516 * Th);
Ta = FNMS(KP250000000, T8, T1);
Tb = T9 + Ta;
Tj = Ta - T9;
ro[WS(os, 4)] = Tb - Ti;
ro[WS(os, 3)] = Tj + Tk;
ro[WS(os, 1)] = Tb + Ti;
ro[WS(os, 2)] = Tj - Tk;
}
{
E Tu, Tv, Tr, Tw, Tq;
Tu = FMA(KP951056516, Ts, KP587785252 * Tt);
Tv = FNMS(KP587785252, Ts, KP951056516 * Tt);
Tq = FNMS(KP250000000, Tp, To);
Tr = Tn + Tq;
Tw = Tq - Tn;
io[WS(os, 1)] = Tr - Tu;
io[WS(os, 3)] = Tw - Tv;
io[WS(os, 4)] = Tu + Tr;
io[WS(os, 2)] = Tv + Tw;
}
}
}
}
static const kdft_desc desc = { 5, "n1_5", { 26, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
}
#endif