iup-stack/fftw/dft/scalar/codelets/n1_32.c

1319 lines
33 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:25 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
/*
* This function contains 372 FP additions, 136 FP multiplications,
* (or, 236 additions, 0 multiplications, 136 fused multiply/add),
* 100 stack variables, 7 constants, and 128 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5k, T2E;
E T3M, T4W, T5j, T2N, T3P, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
E T4G, T5h, T2d, T3F, T4L, T5g, T2m, T3I;
{
E T3, T1x, T14, T2R, T6, T2S, T17, T1y;
{
E T1, T2, T12, T13;
T1 = ri[0];
T2 = ri[WS(is, 16)];
T3 = T1 + T2;
T1x = T1 - T2;
T12 = ii[0];
T13 = ii[WS(is, 16)];
T14 = T12 + T13;
T2R = T12 - T13;
}
{
E T4, T5, T15, T16;
T4 = ri[WS(is, 8)];
T5 = ri[WS(is, 24)];
T6 = T4 + T5;
T2S = T4 - T5;
T15 = ii[WS(is, 8)];
T16 = ii[WS(is, 24)];
T17 = T15 + T16;
T1y = T15 - T16;
}
T7 = T3 + T6;
T4r = T3 - T6;
T4Z = T14 - T17;
T18 = T14 + T17;
T1z = T1x + T1y;
T3t = T1x - T1y;
T3T = T2S + T2R;
T2T = T2R - T2S;
}
{
E Ta, T1A, T1b, T1B, Td, T1D, T1e, T1E;
{
E T8, T9, T19, T1a;
T8 = ri[WS(is, 4)];
T9 = ri[WS(is, 20)];
Ta = T8 + T9;
T1A = T8 - T9;
T19 = ii[WS(is, 4)];
T1a = ii[WS(is, 20)];
T1b = T19 + T1a;
T1B = T19 - T1a;
}
{
E Tb, Tc, T1c, T1d;
Tb = ri[WS(is, 28)];
Tc = ri[WS(is, 12)];
Td = Tb + Tc;
T1D = Tb - Tc;
T1c = ii[WS(is, 28)];
T1d = ii[WS(is, 12)];
T1e = T1c + T1d;
T1E = T1c - T1d;
}
Te = Ta + Td;
T1f = T1b + T1e;
T50 = Td - Ta;
T4s = T1b - T1e;
{
E T2U, T2V, T1C, T1F;
T2U = T1B - T1A;
T2V = T1D + T1E;
T2W = T2U + T2V;
T3u = T2U - T2V;
T1C = T1A + T1B;
T1F = T1D - T1E;
T1G = T1C + T1F;
T3U = T1F - T1C;
}
}
{
E Ti, T1L, T1j, T1I, Tl, T1J, T1m, T1M, T1K, T1N;
{
E Tg, Th, T1h, T1i;
Tg = ri[WS(is, 2)];
Th = ri[WS(is, 18)];
Ti = Tg + Th;
T1L = Tg - Th;
T1h = ii[WS(is, 2)];
T1i = ii[WS(is, 18)];
T1j = T1h + T1i;
T1I = T1h - T1i;
}
{
E Tj, Tk, T1k, T1l;
Tj = ri[WS(is, 10)];
Tk = ri[WS(is, 26)];
Tl = Tj + Tk;
T1J = Tj - Tk;
T1k = ii[WS(is, 10)];
T1l = ii[WS(is, 26)];
T1m = T1k + T1l;
T1M = T1k - T1l;
}
Tm = Ti + Tl;
T1n = T1j + T1m;
T1K = T1I - T1J;
T1N = T1L + T1M;
T1O = FNMS(KP414213562, T1N, T1K);
T2Z = FMA(KP414213562, T1K, T1N);
{
E T3w, T3x, T4u, T4v;
T3w = T1J + T1I;
T3x = T1L - T1M;
T3y = FMA(KP414213562, T3x, T3w);
T3X = FNMS(KP414213562, T3w, T3x);
T4u = T1j - T1m;
T4v = Ti - Tl;
T4w = T4u - T4v;
T53 = T4v + T4u;
}
}
{
E Tp, T1S, T1q, T1P, Ts, T1Q, T1t, T1T, T1R, T1U;
{
E Tn, To, T1o, T1p;
Tn = ri[WS(is, 30)];
To = ri[WS(is, 14)];
Tp = Tn + To;
T1S = Tn - To;
T1o = ii[WS(is, 30)];
T1p = ii[WS(is, 14)];
T1q = T1o + T1p;
T1P = T1o - T1p;
}
{
E Tq, Tr, T1r, T1s;
Tq = ri[WS(is, 6)];
Tr = ri[WS(is, 22)];
Ts = Tq + Tr;
T1Q = Tq - Tr;
T1r = ii[WS(is, 6)];
T1s = ii[WS(is, 22)];
T1t = T1r + T1s;
T1T = T1r - T1s;
}
Tt = Tp + Ts;
T1u = T1q + T1t;
T1R = T1P - T1Q;
T1U = T1S + T1T;
T1V = FMA(KP414213562, T1U, T1R);
T2Y = FNMS(KP414213562, T1R, T1U);
{
E T3z, T3A, T4x, T4y;
T3z = T1Q + T1P;
T3A = T1S - T1T;
T3B = FNMS(KP414213562, T3A, T3z);
T3W = FMA(KP414213562, T3z, T3A);
T4x = Tp - Ts;
T4y = T1q - T1t;
T4z = T4x + T4y;
T52 = T4x - T4y;
}
}
{
E TN, T2G, T2r, T4N, TQ, T2s, T2J, T4O, TU, T2x, T2w, T4T, TX, T2z, T2C;
E T4U;
{
E TL, TM, T2p, T2q;
TL = ri[WS(is, 31)];
TM = ri[WS(is, 15)];
TN = TL + TM;
T2G = TL - TM;
T2p = ii[WS(is, 31)];
T2q = ii[WS(is, 15)];
T2r = T2p - T2q;
T4N = T2p + T2q;
}
{
E TO, TP, T2H, T2I;
TO = ri[WS(is, 7)];
TP = ri[WS(is, 23)];
TQ = TO + TP;
T2s = TO - TP;
T2H = ii[WS(is, 7)];
T2I = ii[WS(is, 23)];
T2J = T2H - T2I;
T4O = T2H + T2I;
}
{
E TS, TT, T2u, T2v;
TS = ri[WS(is, 3)];
TT = ri[WS(is, 19)];
TU = TS + TT;
T2x = TS - TT;
T2u = ii[WS(is, 3)];
T2v = ii[WS(is, 19)];
T2w = T2u - T2v;
T4T = T2u + T2v;
}
{
E TV, TW, T2A, T2B;
TV = ri[WS(is, 27)];
TW = ri[WS(is, 11)];
TX = TV + TW;
T2z = TV - TW;
T2A = ii[WS(is, 27)];
T2B = ii[WS(is, 11)];
T2C = T2A - T2B;
T4U = T2A + T2B;
}
T2t = T2r - T2s;
T3L = T2G - T2J;
T3O = T2s + T2r;
T2K = T2G + T2J;
TR = TN + TQ;
TY = TU + TX;
T5F = TR - TY;
{
E T4P, T4Q, T2y, T2D;
T5G = T4N + T4O;
T5H = T4T + T4U;
T5I = T5G - T5H;
T4P = T4N - T4O;
T4Q = TX - TU;
T4R = T4P - T4Q;
T5k = T4Q + T4P;
T2y = T2w - T2x;
T2D = T2z + T2C;
T2E = T2y + T2D;
T3M = T2D - T2y;
{
E T4S, T4V, T2L, T2M;
T4S = TN - TQ;
T4V = T4T - T4U;
T4W = T4S - T4V;
T5j = T4S + T4V;
T2L = T2x + T2w;
T2M = T2z - T2C;
T2N = T2L + T2M;
T3P = T2L - T2M;
}
}
}
{
E Ty, T2f, T20, T4C, TB, T21, T2i, T4D, TF, T26, T25, T4I, TI, T28, T2b;
E T4J;
{
E Tw, Tx, T1Y, T1Z;
Tw = ri[WS(is, 1)];
Tx = ri[WS(is, 17)];
Ty = Tw + Tx;
T2f = Tw - Tx;
T1Y = ii[WS(is, 1)];
T1Z = ii[WS(is, 17)];
T20 = T1Y - T1Z;
T4C = T1Y + T1Z;
}
{
E Tz, TA, T2g, T2h;
Tz = ri[WS(is, 9)];
TA = ri[WS(is, 25)];
TB = Tz + TA;
T21 = Tz - TA;
T2g = ii[WS(is, 9)];
T2h = ii[WS(is, 25)];
T2i = T2g - T2h;
T4D = T2g + T2h;
}
{
E TD, TE, T23, T24;
TD = ri[WS(is, 5)];
TE = ri[WS(is, 21)];
TF = TD + TE;
T26 = TD - TE;
T23 = ii[WS(is, 5)];
T24 = ii[WS(is, 21)];
T25 = T23 - T24;
T4I = T23 + T24;
}
{
E TG, TH, T29, T2a;
TG = ri[WS(is, 29)];
TH = ri[WS(is, 13)];
TI = TG + TH;
T28 = TG - TH;
T29 = ii[WS(is, 29)];
T2a = ii[WS(is, 13)];
T2b = T29 - T2a;
T4J = T29 + T2a;
}
T22 = T20 - T21;
T3E = T2f - T2i;
T3H = T21 + T20;
T2j = T2f + T2i;
TC = Ty + TB;
TJ = TF + TI;
T5A = TC - TJ;
{
E T4E, T4F, T27, T2c;
T5B = T4C + T4D;
T5C = T4I + T4J;
T5D = T5B - T5C;
T4E = T4C - T4D;
T4F = TI - TF;
T4G = T4E - T4F;
T5h = T4F + T4E;
T27 = T25 - T26;
T2c = T28 + T2b;
T2d = T27 + T2c;
T3F = T2c - T27;
{
E T4H, T4K, T2k, T2l;
T4H = Ty - TB;
T4K = T4I - T4J;
T4L = T4H - T4K;
T5g = T4H + T4K;
T2k = T26 + T25;
T2l = T28 - T2b;
T2m = T2k + T2l;
T3I = T2k - T2l;
}
}
}
{
E T4B, T5b, T5a, T5c, T4Y, T56, T55, T57;
{
E T4t, T4A, T58, T59;
T4t = T4r - T4s;
T4A = T4w - T4z;
T4B = FMA(KP707106781, T4A, T4t);
T5b = FNMS(KP707106781, T4A, T4t);
T58 = FMA(KP414213562, T4R, T4W);
T59 = FNMS(KP414213562, T4G, T4L);
T5a = T58 - T59;
T5c = T59 + T58;
}
{
E T4M, T4X, T51, T54;
T4M = FMA(KP414213562, T4L, T4G);
T4X = FNMS(KP414213562, T4W, T4R);
T4Y = T4M - T4X;
T56 = T4M + T4X;
T51 = T4Z - T50;
T54 = T52 - T53;
T55 = FNMS(KP707106781, T54, T51);
T57 = FMA(KP707106781, T54, T51);
}
ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
io[WS(os, 30)] = FMA(KP923879532, T56, T55);
ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
}
{
E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
{
E T5d, T5e, T5s, T5t;
T5d = T4r + T4s;
T5e = T53 + T52;
T5f = FMA(KP707106781, T5e, T5d);
T5r = FNMS(KP707106781, T5e, T5d);
T5s = FNMS(KP414213562, T5g, T5h);
T5t = FMA(KP414213562, T5j, T5k);
T5u = T5s - T5t;
T5w = T5s + T5t;
}
{
E T5i, T5l, T5n, T5o;
T5i = FMA(KP414213562, T5h, T5g);
T5l = FNMS(KP414213562, T5k, T5j);
T5m = T5i + T5l;
T5q = T5l - T5i;
T5n = T50 + T4Z;
T5o = T4w + T4z;
T5p = FNMS(KP707106781, T5o, T5n);
T5v = FMA(KP707106781, T5o, T5n);
}
ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
}
{
E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
{
E T5x, T5y, T5Q, T5R;
T5x = T7 - Te;
T5y = T1n - T1u;
T5z = T5x + T5y;
T5P = T5x - T5y;
T5Q = T5D - T5A;
T5R = T5F + T5I;
T5S = T5Q - T5R;
T5U = T5Q + T5R;
}
{
E T5E, T5J, T5L, T5M;
T5E = T5A + T5D;
T5J = T5F - T5I;
T5K = T5E + T5J;
T5O = T5J - T5E;
T5L = T18 - T1f;
T5M = Tt - Tm;
T5N = T5L - T5M;
T5T = T5M + T5L;
}
ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
}
{
E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
{
E Tf, Tu, T5W, T5X;
Tf = T7 + Te;
Tu = Tm + Tt;
Tv = Tf + Tu;
T5V = Tf - Tu;
T5W = T5B + T5C;
T5X = T5G + T5H;
T5Y = T5W - T5X;
T60 = T5W + T5X;
}
{
E TK, TZ, T1g, T1v;
TK = TC + TJ;
TZ = TR + TY;
T10 = TK + TZ;
T11 = TZ - TK;
T1g = T18 + T1f;
T1v = T1n + T1u;
T1w = T1g - T1v;
T5Z = T1g + T1v;
}
ro[WS(os, 16)] = Tv - T10;
io[WS(os, 16)] = T5Z - T60;
ro[0] = Tv + T10;
io[0] = T5Z + T60;
io[WS(os, 8)] = T11 + T1w;
ro[WS(os, 8)] = T5V + T5Y;
io[WS(os, 24)] = T1w - T11;
ro[WS(os, 24)] = T5V - T5Y;
}
{
E T1X, T37, T31, T33, T2o, T35, T2P, T34;
{
E T1H, T1W, T2X, T30;
T1H = FNMS(KP707106781, T1G, T1z);
T1W = T1O - T1V;
T1X = FMA(KP923879532, T1W, T1H);
T37 = FNMS(KP923879532, T1W, T1H);
T2X = FNMS(KP707106781, T2W, T2T);
T30 = T2Y - T2Z;
T31 = FNMS(KP923879532, T30, T2X);
T33 = FMA(KP923879532, T30, T2X);
}
{
E T2e, T2n, T2F, T2O;
T2e = FNMS(KP707106781, T2d, T22);
T2n = FNMS(KP707106781, T2m, T2j);
T2o = FMA(KP668178637, T2n, T2e);
T35 = FNMS(KP668178637, T2e, T2n);
T2F = FNMS(KP707106781, T2E, T2t);
T2O = FNMS(KP707106781, T2N, T2K);
T2P = FNMS(KP668178637, T2O, T2F);
T34 = FMA(KP668178637, T2F, T2O);
}
{
E T2Q, T36, T32, T38;
T2Q = T2o - T2P;
ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
T36 = T34 - T35;
io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
io[WS(os, 5)] = FMA(KP831469612, T36, T33);
T32 = T2o + T2P;
io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
io[WS(os, 29)] = FMA(KP831469612, T32, T31);
T38 = T35 + T34;
ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
}
}
{
E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
{
E T3v, T3C, T3V, T3Y;
T3v = FMA(KP707106781, T3u, T3t);
T3C = T3y - T3B;
T3D = FMA(KP923879532, T3C, T3v);
T41 = FNMS(KP923879532, T3C, T3v);
T3V = FMA(KP707106781, T3U, T3T);
T3Y = T3W - T3X;
T3Z = FNMS(KP923879532, T3Y, T3V);
T45 = FMA(KP923879532, T3Y, T3V);
}
{
E T3G, T3J, T3N, T3Q;
T3G = FNMS(KP707106781, T3F, T3E);
T3J = FNMS(KP707106781, T3I, T3H);
T3K = FMA(KP668178637, T3J, T3G);
T42 = FNMS(KP668178637, T3G, T3J);
T3N = FNMS(KP707106781, T3M, T3L);
T3Q = FNMS(KP707106781, T3P, T3O);
T3R = FNMS(KP668178637, T3Q, T3N);
T43 = FMA(KP668178637, T3N, T3Q);
}
{
E T3S, T46, T40, T44;
T3S = T3K + T3R;
ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
T46 = T42 + T43;
io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
io[WS(os, 3)] = FMA(KP831469612, T46, T45);
T40 = T3R - T3K;
io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
T44 = T42 - T43;
ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
}
}
{
E T49, T4p, T4j, T4l, T4c, T4n, T4f, T4m;
{
E T47, T48, T4h, T4i;
T47 = FNMS(KP707106781, T3u, T3t);
T48 = T3X + T3W;
T49 = FNMS(KP923879532, T48, T47);
T4p = FMA(KP923879532, T48, T47);
T4h = FNMS(KP707106781, T3U, T3T);
T4i = T3y + T3B;
T4j = FMA(KP923879532, T4i, T4h);
T4l = FNMS(KP923879532, T4i, T4h);
}
{
E T4a, T4b, T4d, T4e;
T4a = FMA(KP707106781, T3I, T3H);
T4b = FMA(KP707106781, T3F, T3E);
T4c = FMA(KP198912367, T4b, T4a);
T4n = FNMS(KP198912367, T4a, T4b);
T4d = FMA(KP707106781, T3P, T3O);
T4e = FMA(KP707106781, T3M, T3L);
T4f = FNMS(KP198912367, T4e, T4d);
T4m = FMA(KP198912367, T4d, T4e);
}
{
E T4g, T4o, T4k, T4q;
T4g = T4c - T4f;
ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
T4o = T4m - T4n;
io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
T4k = T4c + T4f;
io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
T4q = T4n + T4m;
ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
}
}
{
E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
{
E T39, T3a, T3j, T3k;
T39 = FMA(KP707106781, T1G, T1z);
T3a = T2Z + T2Y;
T3b = FMA(KP923879532, T3a, T39);
T3n = FNMS(KP923879532, T3a, T39);
T3j = FMA(KP707106781, T2W, T2T);
T3k = T1O + T1V;
T3l = FNMS(KP923879532, T3k, T3j);
T3r = FMA(KP923879532, T3k, T3j);
}
{
E T3c, T3d, T3f, T3g;
T3c = FMA(KP707106781, T2m, T2j);
T3d = FMA(KP707106781, T2d, T22);
T3e = FMA(KP198912367, T3d, T3c);
T3o = FNMS(KP198912367, T3c, T3d);
T3f = FMA(KP707106781, T2N, T2K);
T3g = FMA(KP707106781, T2E, T2t);
T3h = FNMS(KP198912367, T3g, T3f);
T3p = FMA(KP198912367, T3f, T3g);
}
{
E T3i, T3s, T3m, T3q;
T3i = T3e + T3h;
ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
T3s = T3o + T3p;
io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
T3m = T3h - T3e;
io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
T3q = T3o - T3p;
ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
}
}
}
}
}
static const kdft_desc desc = { 32, "n1_32", { 236, 0, 136, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
/*
* This function contains 372 FP additions, 84 FP multiplications,
* (or, 340 additions, 52 multiplications, 32 fused multiply/add),
* 100 stack variables, 7 constants, and 128 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;
E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;
{
E T3, T1x, T14, T2S, T6, T2R, T17, T1y;
{
E T1, T2, T12, T13;
T1 = ri[0];
T2 = ri[WS(is, 16)];
T3 = T1 + T2;
T1x = T1 - T2;
T12 = ii[0];
T13 = ii[WS(is, 16)];
T14 = T12 + T13;
T2S = T12 - T13;
}
{
E T4, T5, T15, T16;
T4 = ri[WS(is, 8)];
T5 = ri[WS(is, 24)];
T6 = T4 + T5;
T2R = T4 - T5;
T15 = ii[WS(is, 8)];
T16 = ii[WS(is, 24)];
T17 = T15 + T16;
T1y = T15 - T16;
}
T7 = T3 + T6;
T4r = T3 - T6;
T4Z = T14 - T17;
T18 = T14 + T17;
T1z = T1x - T1y;
T3t = T1x + T1y;
T3T = T2S - T2R;
T2T = T2R + T2S;
}
{
E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;
{
E T8, T9, T19, T1a;
T8 = ri[WS(is, 4)];
T9 = ri[WS(is, 20)];
Ta = T8 + T9;
T1B = T8 - T9;
T19 = ii[WS(is, 4)];
T1a = ii[WS(is, 20)];
T1b = T19 + T1a;
T1A = T19 - T1a;
}
{
E Tb, Tc, T1c, T1d;
Tb = ri[WS(is, 28)];
Tc = ri[WS(is, 12)];
Td = Tb + Tc;
T1D = Tb - Tc;
T1c = ii[WS(is, 28)];
T1d = ii[WS(is, 12)];
T1e = T1c + T1d;
T1E = T1c - T1d;
}
Te = Ta + Td;
T1f = T1b + T1e;
T50 = Td - Ta;
T4s = T1b - T1e;
{
E T2U, T2V, T1C, T1F;
T2U = T1D - T1E;
T2V = T1B + T1A;
T2W = KP707106781 * (T2U - T2V);
T3u = KP707106781 * (T2V + T2U);
T1C = T1A - T1B;
T1F = T1D + T1E;
T1G = KP707106781 * (T1C - T1F);
T3U = KP707106781 * (T1C + T1F);
}
}
{
E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;
{
E Tg, Th, T1h, T1i;
Tg = ri[WS(is, 2)];
Th = ri[WS(is, 18)];
Ti = Tg + Th;
T1L = Tg - Th;
T1h = ii[WS(is, 2)];
T1i = ii[WS(is, 18)];
T1j = T1h + T1i;
T1J = T1h - T1i;
}
{
E Tj, Tk, T1k, T1l;
Tj = ri[WS(is, 10)];
Tk = ri[WS(is, 26)];
Tl = Tj + Tk;
T1I = Tj - Tk;
T1k = ii[WS(is, 10)];
T1l = ii[WS(is, 26)];
T1m = T1k + T1l;
T1M = T1k - T1l;
}
Tm = Ti + Tl;
T1n = T1j + T1m;
T1K = T1I + T1J;
T1N = T1L - T1M;
T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);
T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);
{
E T3w, T3x, T4u, T4v;
T3w = T1J - T1I;
T3x = T1L + T1M;
T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);
T3X = FMA(KP382683432, T3w, KP923879532 * T3x);
T4u = T1j - T1m;
T4v = Ti - Tl;
T4w = T4u - T4v;
T53 = T4v + T4u;
}
}
{
E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;
{
E Tn, To, T1o, T1p;
Tn = ri[WS(is, 30)];
To = ri[WS(is, 14)];
Tp = Tn + To;
T1S = Tn - To;
T1o = ii[WS(is, 30)];
T1p = ii[WS(is, 14)];
T1q = T1o + T1p;
T1Q = T1o - T1p;
}
{
E Tq, Tr, T1r, T1s;
Tq = ri[WS(is, 6)];
Tr = ri[WS(is, 22)];
Ts = Tq + Tr;
T1P = Tq - Tr;
T1r = ii[WS(is, 6)];
T1s = ii[WS(is, 22)];
T1t = T1r + T1s;
T1T = T1r - T1s;
}
Tt = Tp + Ts;
T1u = T1q + T1t;
T1R = T1P + T1Q;
T1U = T1S - T1T;
T1V = FMA(KP382683432, T1R, KP923879532 * T1U);
T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);
{
E T3z, T3A, T4x, T4y;
T3z = T1Q - T1P;
T3A = T1S + T1T;
T3B = FMA(KP923879532, T3z, KP382683432 * T3A);
T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);
T4x = Tp - Ts;
T4y = T1q - T1t;
T4z = T4x + T4y;
T52 = T4x - T4y;
}
}
{
E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;
E T4P;
{
E TL, TM, T2H, T2I;
TL = ri[WS(is, 31)];
TM = ri[WS(is, 15)];
TN = TL + TM;
T2p = TL - TM;
T2H = ii[WS(is, 31)];
T2I = ii[WS(is, 15)];
T2J = T2H - T2I;
T4S = T2H + T2I;
}
{
E TO, TP, T2q, T2r;
TO = ri[WS(is, 7)];
TP = ri[WS(is, 23)];
TQ = TO + TP;
T2G = TO - TP;
T2q = ii[WS(is, 7)];
T2r = ii[WS(is, 23)];
T2s = T2q - T2r;
T4T = T2q + T2r;
}
{
E TS, TT, T2u, T2v;
TS = ri[WS(is, 3)];
TT = ri[WS(is, 19)];
TU = TS + TT;
T2x = TS - TT;
T2u = ii[WS(is, 3)];
T2v = ii[WS(is, 19)];
T2w = T2u - T2v;
T4O = T2u + T2v;
}
{
E TV, TW, T2A, T2B;
TV = ri[WS(is, 27)];
TW = ri[WS(is, 11)];
TX = TV + TW;
T2z = TV - TW;
T2A = ii[WS(is, 27)];
T2B = ii[WS(is, 11)];
T2C = T2A - T2B;
T4P = T2A + T2B;
}
T2t = T2p - T2s;
T3L = T2p + T2s;
T3O = T2J - T2G;
T2K = T2G + T2J;
TR = TN + TQ;
TY = TU + TX;
T5F = TR - TY;
{
E T4N, T4Q, T2y, T2D;
T5G = T4S + T4T;
T5H = T4O + T4P;
T5I = T5G - T5H;
T4N = TN - TQ;
T4Q = T4O - T4P;
T4R = T4N - T4Q;
T5j = T4N + T4Q;
T2y = T2w - T2x;
T2D = T2z + T2C;
T2E = KP707106781 * (T2y - T2D);
T3P = KP707106781 * (T2y + T2D);
{
E T4U, T4V, T2L, T2M;
T4U = T4S - T4T;
T4V = TX - TU;
T4W = T4U - T4V;
T5k = T4V + T4U;
T2L = T2z - T2C;
T2M = T2x + T2w;
T2N = KP707106781 * (T2L - T2M);
T3M = KP707106781 * (T2M + T2L);
}
}
}
{
E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;
E T4J;
{
E Tw, Tx, T1Z, T20;
Tw = ri[WS(is, 1)];
Tx = ri[WS(is, 17)];
Ty = Tw + Tx;
T2f = Tw - Tx;
T1Z = ii[WS(is, 1)];
T20 = ii[WS(is, 17)];
T21 = T1Z - T20;
T4C = T1Z + T20;
}
{
E Tz, TA, T2g, T2h;
Tz = ri[WS(is, 9)];
TA = ri[WS(is, 25)];
TB = Tz + TA;
T1Y = Tz - TA;
T2g = ii[WS(is, 9)];
T2h = ii[WS(is, 25)];
T2i = T2g - T2h;
T4D = T2g + T2h;
}
{
E TD, TE, T29, T2a;
TD = ri[WS(is, 5)];
TE = ri[WS(is, 21)];
TF = TD + TE;
T28 = TD - TE;
T29 = ii[WS(is, 5)];
T2a = ii[WS(is, 21)];
T2b = T29 - T2a;
T4I = T29 + T2a;
}
{
E TG, TH, T24, T25;
TG = ri[WS(is, 29)];
TH = ri[WS(is, 13)];
TI = TG + TH;
T23 = TG - TH;
T24 = ii[WS(is, 29)];
T25 = ii[WS(is, 13)];
T26 = T24 - T25;
T4J = T24 + T25;
}
T22 = T1Y + T21;
T3E = T2f + T2i;
T3H = T21 - T1Y;
T2j = T2f - T2i;
TC = Ty + TB;
TJ = TF + TI;
T5A = TC - TJ;
{
E T4E, T4F, T27, T2c;
T5B = T4C + T4D;
T5C = T4I + T4J;
T5D = T5B - T5C;
T4E = T4C - T4D;
T4F = TI - TF;
T4G = T4E - T4F;
T5g = T4F + T4E;
T27 = T23 - T26;
T2c = T28 + T2b;
T2d = KP707106781 * (T27 - T2c);
T3F = KP707106781 * (T2c + T27);
{
E T4H, T4K, T2k, T2l;
T4H = Ty - TB;
T4K = T4I - T4J;
T4L = T4H - T4K;
T5h = T4H + T4K;
T2k = T2b - T28;
T2l = T23 + T26;
T2m = KP707106781 * (T2k - T2l);
T3I = KP707106781 * (T2k + T2l);
}
}
}
{
E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b;
{
E T4t, T4A, T58, T59;
T4t = T4r - T4s;
T4A = KP707106781 * (T4w - T4z);
T4B = T4t + T4A;
T57 = T4t - T4A;
T58 = FNMS(KP923879532, T4L, KP382683432 * T4G);
T59 = FMA(KP382683432, T4W, KP923879532 * T4R);
T5a = T58 - T59;
T5c = T58 + T59;
}
{
E T4M, T4X, T51, T54;
T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
T4X = FNMS(KP923879532, T4W, KP382683432 * T4R);
T4Y = T4M + T4X;
T56 = T4X - T4M;
T51 = T4Z - T50;
T54 = KP707106781 * (T52 - T53);
T55 = T51 - T54;
T5b = T51 + T54;
}
ro[WS(os, 22)] = T4B - T4Y;
io[WS(os, 22)] = T5b - T5c;
ro[WS(os, 6)] = T4B + T4Y;
io[WS(os, 6)] = T5b + T5c;
io[WS(os, 30)] = T55 - T56;
ro[WS(os, 30)] = T57 - T5a;
io[WS(os, 14)] = T55 + T56;
ro[WS(os, 14)] = T57 + T5a;
}
{
E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
{
E T5d, T5e, T5s, T5t;
T5d = T4r + T4s;
T5e = KP707106781 * (T53 + T52);
T5f = T5d + T5e;
T5r = T5d - T5e;
T5s = FNMS(KP382683432, T5h, KP923879532 * T5g);
T5t = FMA(KP923879532, T5k, KP382683432 * T5j);
T5u = T5s - T5t;
T5w = T5s + T5t;
}
{
E T5i, T5l, T5n, T5o;
T5i = FMA(KP382683432, T5g, KP923879532 * T5h);
T5l = FNMS(KP382683432, T5k, KP923879532 * T5j);
T5m = T5i + T5l;
T5q = T5l - T5i;
T5n = T50 + T4Z;
T5o = KP707106781 * (T4w + T4z);
T5p = T5n - T5o;
T5v = T5n + T5o;
}
ro[WS(os, 18)] = T5f - T5m;
io[WS(os, 18)] = T5v - T5w;
ro[WS(os, 2)] = T5f + T5m;
io[WS(os, 2)] = T5v + T5w;
io[WS(os, 26)] = T5p - T5q;
ro[WS(os, 26)] = T5r - T5u;
io[WS(os, 10)] = T5p + T5q;
ro[WS(os, 10)] = T5r + T5u;
}
{
E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
{
E T5x, T5y, T5Q, T5R;
T5x = T7 - Te;
T5y = T1n - T1u;
T5z = T5x + T5y;
T5P = T5x - T5y;
T5Q = T5D - T5A;
T5R = T5F + T5I;
T5S = KP707106781 * (T5Q - T5R);
T5U = KP707106781 * (T5Q + T5R);
}
{
E T5E, T5J, T5L, T5M;
T5E = T5A + T5D;
T5J = T5F - T5I;
T5K = KP707106781 * (T5E + T5J);
T5O = KP707106781 * (T5J - T5E);
T5L = T18 - T1f;
T5M = Tt - Tm;
T5N = T5L - T5M;
T5T = T5M + T5L;
}
ro[WS(os, 20)] = T5z - T5K;
io[WS(os, 20)] = T5T - T5U;
ro[WS(os, 4)] = T5z + T5K;
io[WS(os, 4)] = T5T + T5U;
io[WS(os, 28)] = T5N - T5O;
ro[WS(os, 28)] = T5P - T5S;
io[WS(os, 12)] = T5N + T5O;
ro[WS(os, 12)] = T5P + T5S;
}
{
E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
{
E Tf, Tu, T5W, T5X;
Tf = T7 + Te;
Tu = Tm + Tt;
Tv = Tf + Tu;
T5V = Tf - Tu;
T5W = T5B + T5C;
T5X = T5G + T5H;
T5Y = T5W - T5X;
T60 = T5W + T5X;
}
{
E TK, TZ, T1g, T1v;
TK = TC + TJ;
TZ = TR + TY;
T10 = TK + TZ;
T11 = TZ - TK;
T1g = T18 + T1f;
T1v = T1n + T1u;
T1w = T1g - T1v;
T5Z = T1g + T1v;
}
ro[WS(os, 16)] = Tv - T10;
io[WS(os, 16)] = T5Z - T60;
ro[0] = Tv + T10;
io[0] = T5Z + T60;
io[WS(os, 8)] = T11 + T1w;
ro[WS(os, 8)] = T5V + T5Y;
io[WS(os, 24)] = T1w - T11;
ro[WS(os, 24)] = T5V - T5Y;
}
{
E T1X, T33, T31, T37, T2o, T34, T2P, T35;
{
E T1H, T1W, T2X, T30;
T1H = T1z - T1G;
T1W = T1O - T1V;
T1X = T1H + T1W;
T33 = T1H - T1W;
T2X = T2T - T2W;
T30 = T2Y - T2Z;
T31 = T2X - T30;
T37 = T2X + T30;
}
{
E T2e, T2n, T2F, T2O;
T2e = T22 - T2d;
T2n = T2j - T2m;
T2o = FMA(KP980785280, T2e, KP195090322 * T2n);
T34 = FNMS(KP980785280, T2n, KP195090322 * T2e);
T2F = T2t - T2E;
T2O = T2K - T2N;
T2P = FNMS(KP980785280, T2O, KP195090322 * T2F);
T35 = FMA(KP195090322, T2O, KP980785280 * T2F);
}
{
E T2Q, T38, T32, T36;
T2Q = T2o + T2P;
ro[WS(os, 23)] = T1X - T2Q;
ro[WS(os, 7)] = T1X + T2Q;
T38 = T34 + T35;
io[WS(os, 23)] = T37 - T38;
io[WS(os, 7)] = T37 + T38;
T32 = T2P - T2o;
io[WS(os, 31)] = T31 - T32;
io[WS(os, 15)] = T31 + T32;
T36 = T34 - T35;
ro[WS(os, 31)] = T33 - T36;
ro[WS(os, 15)] = T33 + T36;
}
}
{
E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
{
E T3v, T3C, T3V, T3Y;
T3v = T3t - T3u;
T3C = T3y - T3B;
T3D = T3v + T3C;
T41 = T3v - T3C;
T3V = T3T - T3U;
T3Y = T3W - T3X;
T3Z = T3V - T3Y;
T45 = T3V + T3Y;
}
{
E T3G, T3J, T3N, T3Q;
T3G = T3E - T3F;
T3J = T3H - T3I;
T3K = FMA(KP555570233, T3G, KP831469612 * T3J);
T42 = FNMS(KP831469612, T3G, KP555570233 * T3J);
T3N = T3L - T3M;
T3Q = T3O - T3P;
T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N);
T43 = FMA(KP831469612, T3N, KP555570233 * T3Q);
}
{
E T3S, T46, T40, T44;
T3S = T3K + T3R;
ro[WS(os, 21)] = T3D - T3S;
ro[WS(os, 5)] = T3D + T3S;
T46 = T42 + T43;
io[WS(os, 21)] = T45 - T46;
io[WS(os, 5)] = T45 + T46;
T40 = T3R - T3K;
io[WS(os, 29)] = T3Z - T40;
io[WS(os, 13)] = T3Z + T40;
T44 = T42 - T43;
ro[WS(os, 29)] = T41 - T44;
ro[WS(os, 13)] = T41 + T44;
}
}
{
E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n;
{
E T47, T48, T4h, T4i;
T47 = T3t + T3u;
T48 = T3X + T3W;
T49 = T47 + T48;
T4l = T47 - T48;
T4h = T3T + T3U;
T4i = T3y + T3B;
T4j = T4h - T4i;
T4p = T4h + T4i;
}
{
E T4a, T4b, T4d, T4e;
T4a = T3E + T3F;
T4b = T3H + T3I;
T4c = FMA(KP980785280, T4a, KP195090322 * T4b);
T4m = FNMS(KP195090322, T4a, KP980785280 * T4b);
T4d = T3L + T3M;
T4e = T3O + T3P;
T4f = FNMS(KP195090322, T4e, KP980785280 * T4d);
T4n = FMA(KP195090322, T4d, KP980785280 * T4e);
}
{
E T4g, T4q, T4k, T4o;
T4g = T4c + T4f;
ro[WS(os, 17)] = T49 - T4g;
ro[WS(os, 1)] = T49 + T4g;
T4q = T4m + T4n;
io[WS(os, 17)] = T4p - T4q;
io[WS(os, 1)] = T4p + T4q;
T4k = T4f - T4c;
io[WS(os, 25)] = T4j - T4k;
io[WS(os, 9)] = T4j + T4k;
T4o = T4m - T4n;
ro[WS(os, 25)] = T4l - T4o;
ro[WS(os, 9)] = T4l + T4o;
}
}
{
E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
{
E T39, T3a, T3j, T3k;
T39 = T1z + T1G;
T3a = T2Z + T2Y;
T3b = T39 + T3a;
T3n = T39 - T3a;
T3j = T2T + T2W;
T3k = T1O + T1V;
T3l = T3j - T3k;
T3r = T3j + T3k;
}
{
E T3c, T3d, T3f, T3g;
T3c = T22 + T2d;
T3d = T2j + T2m;
T3e = FMA(KP555570233, T3c, KP831469612 * T3d);
T3o = FNMS(KP555570233, T3d, KP831469612 * T3c);
T3f = T2t + T2E;
T3g = T2K + T2N;
T3h = FNMS(KP555570233, T3g, KP831469612 * T3f);
T3p = FMA(KP831469612, T3g, KP555570233 * T3f);
}
{
E T3i, T3s, T3m, T3q;
T3i = T3e + T3h;
ro[WS(os, 19)] = T3b - T3i;
ro[WS(os, 3)] = T3b + T3i;
T3s = T3o + T3p;
io[WS(os, 19)] = T3r - T3s;
io[WS(os, 3)] = T3r + T3s;
T3m = T3h - T3e;
io[WS(os, 27)] = T3l - T3m;
io[WS(os, 11)] = T3l + T3m;
T3q = T3o - T3p;
ro[WS(os, 27)] = T3n - T3q;
ro[WS(os, 11)] = T3n + T3q;
}
}
}
}
}
static const kdft_desc desc = { 32, "n1_32", { 340, 52, 32, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc);
}
#endif