<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual is for FFTW (version 3.3.10, 10 December 2020). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ --> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Distributed-memory FFTW with MPI (FFTW 3.3.10)</title> <meta name="description" content="Distributed-memory FFTW with MPI (FFTW 3.3.10)"> <meta name="keywords" content="Distributed-memory FFTW with MPI (FFTW 3.3.10)"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <link href="index.html" rel="start" title="Top"> <link href="Concept-Index.html" rel="index" title="Concept Index"> <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> <link href="index.html" rel="up" title="Top"> <link href="FFTW-MPI-Installation.html" rel="next" title="FFTW MPI Installation"> <link href="Thread-safety.html" rel="prev" title="Thread safety"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.indentedblock {margin-right: 0em} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.lisp {margin-left: 3.2em} kbd {font-style: oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} span.nolinebreak {white-space: nowrap} span.roman {font-family: initial; font-weight: normal} span.sansserif {font-family: sans-serif; font-weight: normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en"> <span id="Distributed_002dmemory-FFTW-with-MPI"></span><div class="header"> <p> Next: <a href="Calling-FFTW-from-Modern-Fortran.html" accesskey="n" rel="next">Calling FFTW from Modern Fortran</a>, Previous: <a href="Multi_002dthreaded-FFTW.html" accesskey="p" rel="prev">Multi-threaded FFTW</a>, Up: <a href="index.html" accesskey="u" rel="up">Top</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p> </div> <hr> <span id="Distributed_002dmemory-FFTW-with-MPI-1"></span><h2 class="chapter">6 Distributed-memory FFTW with MPI</h2> <span id="index-MPI"></span> <span id="index-parallel-transform-1"></span> <p>In this chapter we document the parallel FFTW routines for parallel systems supporting the MPI message-passing interface. Unlike the shared-memory threads described in the previous chapter, MPI allows you to use <em>distributed-memory</em> parallelism, where each CPU has its own separate memory, and which can scale up to clusters of many thousands of processors. This capability comes at a price, however: each process only stores a <em>portion</em> of the data to be transformed, which means that the data structures and programming-interface are quite different from the serial or threads versions of FFTW. <span id="index-data-distribution"></span> </p> <p>Distributed-memory parallelism is especially useful when you are transforming arrays so large that they do not fit into the memory of a single processor. The storage per-process required by FFTW’s MPI routines is proportional to the total array size divided by the number of processes. Conversely, distributed-memory parallelism can easily pose an unacceptably high communications overhead for small problems; the threshold problem size for which parallelism becomes advantageous will depend on the precise problem you are interested in, your hardware, and your MPI implementation. </p> <p>A note on terminology: in MPI, you divide the data among a set of “processes” which each run in their own memory address space. Generally, each process runs on a different physical processor, but this is not required. A set of processes in MPI is described by an opaque data structure called a “communicator,” the most common of which is the predefined communicator <code>MPI_COMM_WORLD</code> which refers to <em>all</em> processes. For more information on these and other concepts common to all MPI programs, we refer the reader to the documentation at <a href="http://www.mcs.anl.gov/research/projects/mpi/">the MPI home page</a>. <span id="index-MPI-communicator"></span> <span id="index-MPI_005fCOMM_005fWORLD"></span> </p> <p>We assume in this chapter that the reader is familiar with the usage of the serial (uniprocessor) FFTW, and focus only on the concepts new to the MPI interface. </p> <table class="menu" border="0" cellspacing="0"> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Installation.html" accesskey="1">FFTW MPI Installation</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Linking-and-Initializing-MPI-FFTW.html" accesskey="2">Linking and Initializing MPI FFTW</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="2d-MPI-example.html" accesskey="3">2d MPI example</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="MPI-Data-Distribution.html" accesskey="4">MPI Data Distribution</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html" accesskey="5">Multi-dimensional MPI DFTs of Real Data</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html" accesskey="6">Other Multi-dimensional Real-data MPI Transforms</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Transposes.html" accesskey="7">FFTW MPI Transposes</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Wisdom.html" accesskey="8">FFTW MPI Wisdom</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Avoiding-MPI-Deadlocks.html" accesskey="9">Avoiding MPI Deadlocks</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Performance-Tips.html">FFTW MPI Performance Tips</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Combining-MPI-and-Threads.html">Combining MPI and Threads</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Reference.html">FFTW MPI Reference</a></td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="FFTW-MPI-Fortran-Interface.html">FFTW MPI Fortran Interface</a></td><td> </td><td align="left" valign="top"> </td></tr> </table> <hr> <div class="header"> <p> Next: <a href="Calling-FFTW-from-Modern-Fortran.html" accesskey="n" rel="next">Calling FFTW from Modern Fortran</a>, Previous: <a href="Multi_002dthreaded-FFTW.html" accesskey="p" rel="prev">Multi-threaded FFTW</a>, Up: <a href="index.html" accesskey="u" rel="up">Top</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p> </div> </body> </html>