/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ #include "rdft/codelet-rdft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */ /* * This function contains 86 FP additions, 44 FP multiplications, * (or, 42 additions, 0 multiplications, 44 fused multiply/add), * 50 stack variables, 5 constants, and 40 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T5, TD, Tl, Tr, TO, T1l, T1d, T10, T1k, TT, T11, T1a, Tc, Tj, Tk; E Tw, TB, TC, Tm, Tn, To, TE, TF, TG; { E T4, Tq, T3, Tp, T1, T2; T4 = Cr[WS(csr, 5)]; Tq = Ci[WS(csi, 5)]; T1 = Cr[0]; T2 = Cr[WS(csr, 10)]; T3 = T1 + T2; Tp = T1 - T2; T5 = FNMS(KP2_000000000, T4, T3); TD = FNMS(KP2_000000000, Tq, Tp); Tl = FMA(KP2_000000000, T4, T3); Tr = FMA(KP2_000000000, Tq, Tp); } { E T8, Ts, TR, T19, Tb, T18, Tv, TS, Tf, Tx, TM, T1c, Ti, T1b, TA; E TN; { E T6, T7, TP, TQ; T6 = Cr[WS(csr, 4)]; T7 = Cr[WS(csr, 6)]; T8 = T6 + T7; Ts = T6 - T7; TP = Ci[WS(csi, 4)]; TQ = Ci[WS(csi, 6)]; TR = TP - TQ; T19 = TP + TQ; } { E T9, Ta, Tt, Tu; T9 = Cr[WS(csr, 9)]; Ta = Cr[WS(csr, 1)]; Tb = T9 + Ta; T18 = T9 - Ta; Tt = Ci[WS(csi, 9)]; Tu = Ci[WS(csi, 1)]; Tv = Tt + Tu; TS = Tt - Tu; } { E Td, Te, TK, TL; Td = Cr[WS(csr, 8)]; Te = Cr[WS(csr, 2)]; Tf = Td + Te; Tx = Td - Te; TK = Ci[WS(csi, 8)]; TL = Ci[WS(csi, 2)]; TM = TK - TL; T1c = TK + TL; } { E Tg, Th, Ty, Tz; Tg = Cr[WS(csr, 7)]; Th = Cr[WS(csr, 3)]; Ti = Tg + Th; T1b = Tg - Th; Ty = Ci[WS(csi, 7)]; Tz = Ci[WS(csi, 3)]; TA = Ty + Tz; TN = Tz - Ty; } TO = TM - TN; T1l = T19 - T18; T1d = T1b + T1c; T10 = TS + TR; T1k = T1c - T1b; TT = TR - TS; T11 = TN + TM; T1a = T18 + T19; Tc = T8 - Tb; Tj = Tf - Ti; Tk = Tc + Tj; Tw = Ts + Tv; TB = Tx - TA; TC = Tw + TB; Tm = T8 + Tb; Tn = Tf + Ti; To = Tm + Tn; TE = Ts - Tv; TF = Tx + TA; TG = TE + TF; } R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5); R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr); R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD); R0[0] = FMA(KP2_000000000, To, Tl); { E TU, TW, TJ, TV, TH, TI; TU = FNMS(KP618033988, TT, TO); TW = FMA(KP618033988, TO, TT); TH = FNMS(KP500000000, Tk, T5); TI = Tc - Tj; TJ = FNMS(KP1_118033988, TI, TH); TV = FMA(KP1_118033988, TI, TH); R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ); R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV); R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ); R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV); } { E T1e, T1g, T17, T1f, T15, T16; T1e = FMA(KP618033988, T1d, T1a); T1g = FNMS(KP618033988, T1a, T1d); T15 = FNMS(KP500000000, TG, TD); T16 = TE - TF; T17 = FMA(KP1_118033988, T16, T15); T1f = FNMS(KP1_118033988, T16, T15); R1[0] = FNMS(KP1_902113032, T1e, T17); R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f); R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17); R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f); } { E T1m, T1o, T1j, T1n, T1h, T1i; T1m = FNMS(KP618033988, T1l, T1k); T1o = FMA(KP618033988, T1k, T1l); T1h = FNMS(KP500000000, TC, Tr); T1i = Tw - TB; T1j = FNMS(KP1_118033988, T1i, T1h); T1n = FMA(KP1_118033988, T1i, T1h); R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j); R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n); R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j); R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n); } { E T12, T14, TZ, T13, TX, TY; T12 = FMA(KP618033988, T11, T10); T14 = FNMS(KP618033988, T10, T11); TX = FNMS(KP500000000, To, Tl); TY = Tm - Tn; TZ = FMA(KP1_118033988, TY, TX); T13 = FNMS(KP1_118033988, TY, TX); R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ); R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13); R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ); R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13); } } } } static const kr2c_desc desc = { 20, "r2cb_20", { 42, 0, 44, 0 }, &GENUS }; void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); } #else /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */ /* * This function contains 86 FP additions, 30 FP multiplications, * (or, 70 additions, 14 multiplications, 16 fused multiply/add), * 50 stack variables, 5 constants, and 40 memory accesses */ #include "rdft/scalar/r2cb.h" static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) { DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); { INT i; for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl; E Ty, TD, TE, Tn, To, Tp, TG, TH, TI; { E T5, Ts, T3, Tq; { E T4, Tr, T1, T2; T4 = Cr[WS(csr, 5)]; T5 = KP2_000000000 * T4; Tr = Ci[WS(csi, 5)]; Ts = KP2_000000000 * Tr; T1 = Cr[0]; T2 = Cr[WS(csr, 10)]; T3 = T1 + T2; Tq = T1 - T2; } T6 = T3 - T5; TF = Tq - Ts; Tm = T3 + T5; Tt = Tq + Ts; } { E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC; E TU; { E T7, T8, TM, TN; T7 = Cr[WS(csr, 4)]; T8 = Cr[WS(csr, 6)]; T9 = T7 + T8; Tu = T7 - T8; TM = Ci[WS(csi, 4)]; TN = Ci[WS(csi, 6)]; TO = TM - TN; T1b = TM + TN; } { E Ta, Tb, Tv, Tw; Ta = Cr[WS(csr, 9)]; Tb = Cr[WS(csr, 1)]; Tc = Ta + Tb; T1a = Ta - Tb; Tv = Ci[WS(csi, 9)]; Tw = Ci[WS(csi, 1)]; Tx = Tv + Tw; TP = Tv - Tw; } { E Te, Tf, TR, TS; Te = Cr[WS(csr, 8)]; Tf = Cr[WS(csr, 2)]; Tg = Te + Tf; Tz = Te - Tf; TR = Ci[WS(csi, 8)]; TS = Ci[WS(csi, 2)]; TT = TR - TS; T1e = TR + TS; } { E Th, Ti, TA, TB; Th = Cr[WS(csr, 7)]; Ti = Cr[WS(csr, 3)]; Tj = Th + Ti; T1d = Th - Ti; TA = Ci[WS(csi, 7)]; TB = Ci[WS(csi, 3)]; TC = TA + TB; TU = TB - TA; } TQ = TO - TP; T1n = T1e - T1d; T1f = T1d + T1e; T12 = TP + TO; T1m = T1b - T1a; TV = TT - TU; T13 = TU + TT; T1c = T1a + T1b; Td = T9 - Tc; Tk = Tg - Tj; Tl = Td + Tk; Ty = Tu + Tx; TD = Tz - TC; TE = Ty + TD; Tn = T9 + Tc; To = Tg + Tj; Tp = Tn + To; TG = Tu - Tx; TH = Tz + TC; TI = TG + TH; } R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6); R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt); R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF); R0[0] = FMA(KP2_000000000, Tp, Tm); { E TW, TY, TL, TX, TJ, TK; TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ); TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV); TJ = FNMS(KP500000000, Tl, T6); TK = KP1_118033988 * (Td - Tk); TL = TJ - TK; TX = TK + TJ; R0[WS(rs, 1)] = TL - TW; R0[WS(rs, 7)] = TX + TY; R0[WS(rs, 9)] = TL + TW; R0[WS(rs, 3)] = TX - TY; } { E T1g, T1i, T19, T1h, T17, T18; T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c); T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f); T17 = FNMS(KP500000000, TI, TF); T18 = KP1_118033988 * (TG - TH); T19 = T17 - T18; T1h = T18 + T17; R1[WS(rs, 8)] = T19 - T1g; R1[WS(rs, 4)] = T1h + T1i; R1[WS(rs, 6)] = T19 + T1g; R1[0] = T1h - T1i; } { E T1o, T1q, T1l, T1p, T1j, T1k; T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m); T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n); T1j = FNMS(KP500000000, TE, Tt); T1k = KP1_118033988 * (Ty - TD); T1l = T1j - T1k; T1p = T1k + T1j; R1[WS(rs, 3)] = T1l - T1o; R1[WS(rs, 9)] = T1p + T1q; R1[WS(rs, 1)] = T1l + T1o; R1[WS(rs, 5)] = T1p - T1q; } { E T14, T16, T11, T15, TZ, T10; T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12); T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13); TZ = FNMS(KP500000000, Tp, Tm); T10 = KP1_118033988 * (Tn - To); T11 = TZ - T10; T15 = T10 + TZ; R0[WS(rs, 6)] = T11 - T14; R0[WS(rs, 2)] = T15 + T16; R0[WS(rs, 4)] = T11 + T14; R0[WS(rs, 8)] = T15 - T16; } } } } static const kr2c_desc desc = { 20, "r2cb_20", { 70, 14, 16, 0 }, &GENUS }; void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); } #endif