/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:29 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */ /* * This function contains 59 FP additions, 42 FP multiplications, * (or, 41 additions, 24 multiplications, 18 fused multiply/add), * 28 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { V T1, TC, T6, T7, Ty, Tq, Tz, TA, T9, TD, Te, Tf, Tu, Tl, Tv; V Tw; { V T5, T3, T4, T2; T1 = LD(&(x[0]), ms, &(x[0])); T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 14]), T4); T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T3 = BYTWJ(&(W[TWVL * 6]), T2); TC = VSUB(T5, T3); T6 = VADD(T3, T5); T7 = VFNMS(LDK(KP500000000), T6, T1); } { V Tn, Tp, Tm, Tx, To; Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Tn = BYTWJ(&(W[0]), Tm); Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Ty = BYTWJ(&(W[TWVL * 16]), Tx); To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tp = BYTWJ(&(W[TWVL * 8]), To); Tq = VSUB(Tn, Tp); Tz = VADD(Tn, Tp); TA = VFNMS(LDK(KP500000000), Tz, Ty); } { V Td, Tb, T8, Tc, Ta; T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T9 = BYTWJ(&(W[TWVL * 10]), T8); Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Td = BYTWJ(&(W[TWVL * 2]), Tc); Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 18]), Ta); TD = VSUB(Td, Tb); Te = VADD(Tb, Td); Tf = VFNMS(LDK(KP500000000), Te, T9); } { V Ti, Tk, Th, Tt, Tj; Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Ti = BYTWJ(&(W[TWVL * 20]), Th); Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Tu = BYTWJ(&(W[TWVL * 4]), Tt); Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tk = BYTWJ(&(W[TWVL * 12]), Tj); Tl = VSUB(Ti, Tk); Tv = VADD(Tk, Ti); Tw = VFNMS(LDK(KP500000000), Tv, Tu); } { V Ts, TG, TF, TH; { V Tg, Tr, TB, TE; Tg = VSUB(T7, Tf); Tr = VADD(Tl, Tq); Ts = VFMA(LDK(KP866025403), Tr, Tg); TG = VFNMS(LDK(KP866025403), Tr, Tg); TB = VSUB(Tw, TA); TE = VSUB(TC, TD); TF = VFNMS(LDK(KP866025403), TE, TB); TH = VFMA(LDK(KP866025403), TE, TB); } ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)])); } { V TS, TW, TV, TX; { V TQ, TR, TT, TU; TQ = VADD(T1, T6); TR = VADD(T9, Te); TS = VSUB(TQ, TR); TW = VADD(TQ, TR); TT = VADD(Tu, Tv); TU = VADD(Ty, Tz); TV = VSUB(TT, TU); TX = VADD(TT, TU); } ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); } { V TK, TO, TN, TP; { V TI, TJ, TL, TM; TI = VADD(T7, Tf); TJ = VADD(Tw, TA); TK = VSUB(TI, TJ); TO = VADD(TI, TJ); TL = VSUB(Tl, Tq); TM = VADD(TC, TD); TN = VMUL(LDK(KP866025403), VSUB(TL, TM)); TP = VMUL(LDK(KP866025403), VADD(TM, TL)); } ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, { 41, 24, 18, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1fv_12) (planner *p) { X(kdft_dit_register) (p, t1fv_12, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */ /* * This function contains 59 FP additions, 30 FP multiplications, * (or, 55 additions, 26 multiplications, 4 fused multiply/add), * 28 stack variables, 2 constants, and 24 memory accesses */ #include "dft/simd/t1f.h" static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP866025403, +0.866025403784438646763723170752936183471402627); DVK(KP500000000, +0.500000000000000000000000000000000000000000000); { INT m; R *x; x = ri; for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn; V TK; { V T5, T3, T4, T2; T1 = LD(&(x[0]), ms, &(x[0])); T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T5 = BYTWJ(&(W[TWVL * 14]), T4); T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T3 = BYTWJ(&(W[TWVL * 6]), T2); TH = VSUB(T5, T3); T6 = VADD(T3, T5); TA = VFNMS(LDK(KP500000000), T6, T1); } { V Tu, Ts, Tp, Tt, Tr; Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tq = BYTWJ(&(W[TWVL * 16]), Tp); Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); Tu = BYTWJ(&(W[TWVL * 8]), Tt); Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); Ts = BYTWJ(&(W[0]), Tr); TE = VSUB(Tu, Ts); Tv = VADD(Ts, Tu); TL = VFNMS(LDK(KP500000000), Tv, Tq); } { V Td, Tb, T8, Tc, Ta; T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T9 = BYTWJ(&(W[TWVL * 10]), T8); Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Td = BYTWJ(&(W[TWVL * 2]), Tc); Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); Tb = BYTWJ(&(W[TWVL * 18]), Ta); TI = VSUB(Td, Tb); Te = VADD(Tb, Td); TB = VFNMS(LDK(KP500000000), Te, T9); } { V Tm, Tk, Th, Tl, Tj; Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Ti = BYTWJ(&(W[TWVL * 4]), Th); Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); Tm = BYTWJ(&(W[TWVL * 20]), Tl); Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); Tk = BYTWJ(&(W[TWVL * 12]), Tj); TD = VSUB(Tm, Tk); Tn = VADD(Tk, Tm); TK = VFNMS(LDK(KP500000000), Tn, Ti); } { V Tg, Ty, Tx, Tz; { V T7, Tf, To, Tw; T7 = VADD(T1, T6); Tf = VADD(T9, Te); Tg = VSUB(T7, Tf); Ty = VADD(T7, Tf); To = VADD(Ti, Tn); Tw = VADD(Tq, Tv); Tx = VBYI(VSUB(To, Tw)); Tz = VADD(To, Tw); } ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)])); ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); } { V TS, TW, TV, TX; { V TQ, TR, TT, TU; TQ = VADD(TA, TB); TR = VADD(TK, TL); TS = VSUB(TQ, TR); TW = VADD(TQ, TR); TT = VADD(TD, TE); TU = VADD(TH, TI); TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU))); TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT))); } ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0])); ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0])); ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0])); } { V TG, TP, TN, TO; { V TC, TF, TJ, TM; TC = VSUB(TA, TB); TF = VMUL(LDK(KP866025403), VSUB(TD, TE)); TG = VSUB(TC, TF); TP = VADD(TC, TF); TJ = VMUL(LDK(KP866025403), VSUB(TH, TI)); TM = VSUB(TK, TL); TN = VBYI(VADD(TJ, TM)); TO = VBYI(VSUB(TJ, TM)); } ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), VTW(0, 5), VTW(0, 6), VTW(0, 7), VTW(0, 8), VTW(0, 9), VTW(0, 10), VTW(0, 11), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, { 55, 26, 4, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1fv_12) (planner *p) { X(kdft_dit_register) (p, t1fv_12, &desc); } #endif