/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Tue Sep 14 10:45:49 EDT 2021 */ #include "dft/codelet-dft.h" #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1bv_5 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 20 FP additions, 19 FP multiplications, * (or, 11 additions, 10 multiplications, 9 fused multiply/add), * 20 stack variables, 4 constants, and 10 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) { V T1, Tg, Th, T6, Tb, Tc; T1 = LD(&(x[0]), ms, &(x[0])); { V T3, Ta, T5, T8; { V T2, T9, T4, T7; T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T3 = BYTW(&(W[0]), T2); T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); Ta = BYTW(&(W[TWVL * 4]), T9); T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T5 = BYTW(&(W[TWVL * 6]), T4); T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T8 = BYTW(&(W[TWVL * 2]), T7); } Tg = VSUB(T3, T5); Th = VSUB(T8, Ta); T6 = VADD(T3, T5); Tb = VADD(T8, Ta); Tc = VADD(T6, Tb); } ST(&(x[0]), VADD(T1, Tc), ms, &(x[0])); { V Ti, Tk, Tf, Tj, Td, Te; Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg)); Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th)); Td = VFNMS(LDK(KP250000000), Tc, T1); Te = VSUB(T6, Tb); Tf = VFMA(LDK(KP559016994), Te, Td); Tj = VFNMS(LDK(KP559016994), Te, Td); ST(&(x[WS(rs, 1)]), VFMAI(Ti, Tf), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VFMAI(Tk, Tj), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VFNMSI(Ti, Tf), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VFNMSI(Tk, Tj), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 5, XSIMD_STRING("t1bv_5"), twinstr, &GENUS, { 11, 10, 9, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1bv_5) (planner *p) { X(kdft_dit_register) (p, t1bv_5, &desc); } #else /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1bv_5 -include dft/simd/t1b.h -sign 1 */ /* * This function contains 20 FP additions, 14 FP multiplications, * (or, 17 additions, 11 multiplications, 3 fused multiply/add), * 20 stack variables, 4 constants, and 10 memory accesses */ #include "dft/simd/t1b.h" static void t1bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) { DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP587785252, +0.587785252292473129168705954639072768597652438); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); { INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) { V Tf, T5, Ta, Tc, Td, Tg; Tf = LD(&(x[0]), ms, &(x[0])); { V T2, T9, T4, T7; { V T1, T8, T3, T6; T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); T2 = BYTW(&(W[0]), T1); T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T9 = BYTW(&(W[TWVL * 4]), T8); T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); T4 = BYTW(&(W[TWVL * 6]), T3); T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); T7 = BYTW(&(W[TWVL * 2]), T6); } T5 = VSUB(T2, T4); Ta = VSUB(T7, T9); Tc = VADD(T2, T4); Td = VADD(T7, T9); Tg = VADD(Tc, Td); } ST(&(x[0]), VADD(Tf, Tg), ms, &(x[0])); { V Tb, Tj, Ti, Tk, Te, Th; Tb = VBYI(VFMA(LDK(KP951056516), T5, VMUL(LDK(KP587785252), Ta))); Tj = VBYI(VFNMS(LDK(KP951056516), Ta, VMUL(LDK(KP587785252), T5))); Te = VMUL(LDK(KP559016994), VSUB(Tc, Td)); Th = VFNMS(LDK(KP250000000), Tg, Tf); Ti = VADD(Te, Th); Tk = VSUB(Th, Te); ST(&(x[WS(rs, 1)]), VADD(Tb, Ti), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)])); ST(&(x[WS(rs, 4)]), VSUB(Ti, Tb), ms, &(x[0])); ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0])); } } } VLEAVE(); } static const tw_instr twinstr[] = { VTW(0, 1), VTW(0, 2), VTW(0, 3), VTW(0, 4), { TW_NEXT, VL, 0 } }; static const ct_desc desc = { 5, XSIMD_STRING("t1bv_5"), twinstr, &GENUS, { 17, 11, 3, 0 }, 0, 0, 0 }; void XSIMD(codelet_t1bv_5) (planner *p) { X(kdft_dit_register) (p, t1bv_5, &desc); } #endif