355 lines
10 KiB
C
355 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:27 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 72 FP additions, 66 FP multiplications,
|
||
|
* (or, 18 additions, 12 multiplications, 54 fused multiply/add),
|
||
|
* 37 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
||
|
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
||
|
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
||
|
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
|
||
|
E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b;
|
||
|
T1 = ri[0];
|
||
|
T1c = ii[0];
|
||
|
{
|
||
|
E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8;
|
||
|
T3 = ri[WS(rs, 1)];
|
||
|
T6 = ii[WS(rs, 1)];
|
||
|
T2 = W[0];
|
||
|
T4 = T2 * T3;
|
||
|
TN = T2 * T6;
|
||
|
T9 = ri[WS(rs, 6)];
|
||
|
Tc = ii[WS(rs, 6)];
|
||
|
T8 = W[10];
|
||
|
Ta = T8 * T9;
|
||
|
TP = T8 * Tc;
|
||
|
{
|
||
|
E T7, TO, Td, TQ, T5, Tb;
|
||
|
T5 = W[1];
|
||
|
T7 = FMA(T5, T6, T4);
|
||
|
TO = FNMS(T5, T3, TN);
|
||
|
Tb = W[11];
|
||
|
Td = FMA(Tb, Tc, Ta);
|
||
|
TQ = FNMS(Tb, T9, TP);
|
||
|
Te = T7 + Td;
|
||
|
T1h = Td - T7;
|
||
|
TR = TO - TQ;
|
||
|
T19 = TO + TQ;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl;
|
||
|
Tg = ri[WS(rs, 2)];
|
||
|
Tj = ii[WS(rs, 2)];
|
||
|
Tf = W[2];
|
||
|
Th = Tf * Tg;
|
||
|
TI = Tf * Tj;
|
||
|
Tm = ri[WS(rs, 5)];
|
||
|
Tp = ii[WS(rs, 5)];
|
||
|
Tl = W[8];
|
||
|
Tn = Tl * Tm;
|
||
|
TK = Tl * Tp;
|
||
|
{
|
||
|
E Tk, TJ, Tq, TL, Ti, To;
|
||
|
Ti = W[3];
|
||
|
Tk = FMA(Ti, Tj, Th);
|
||
|
TJ = FNMS(Ti, Tg, TI);
|
||
|
To = W[9];
|
||
|
Tq = FMA(To, Tp, Tn);
|
||
|
TL = FNMS(To, Tm, TK);
|
||
|
Tr = Tk + Tq;
|
||
|
T1g = Tq - Tk;
|
||
|
TM = TJ - TL;
|
||
|
T1a = TJ + TL;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty;
|
||
|
Tt = ri[WS(rs, 3)];
|
||
|
Tw = ii[WS(rs, 3)];
|
||
|
Ts = W[4];
|
||
|
Tu = Ts * Tt;
|
||
|
TS = Ts * Tw;
|
||
|
Tz = ri[WS(rs, 4)];
|
||
|
TC = ii[WS(rs, 4)];
|
||
|
Ty = W[6];
|
||
|
TA = Ty * Tz;
|
||
|
TU = Ty * TC;
|
||
|
{
|
||
|
E Tx, TT, TD, TV, Tv, TB;
|
||
|
Tv = W[5];
|
||
|
Tx = FMA(Tv, Tw, Tu);
|
||
|
TT = FNMS(Tv, Tt, TS);
|
||
|
TB = W[7];
|
||
|
TD = FMA(TB, TC, TA);
|
||
|
TV = FNMS(TB, Tz, TU);
|
||
|
TE = Tx + TD;
|
||
|
T1i = TD - Tx;
|
||
|
TW = TT - TV;
|
||
|
T1b = TT + TV;
|
||
|
}
|
||
|
}
|
||
|
ri[0] = T1 + Te + Tr + TE;
|
||
|
ii[0] = T19 + T1a + T1b + T1c;
|
||
|
{
|
||
|
E TG, TY, TF, TX, TH;
|
||
|
TF = FNMS(KP356895867, Tr, Te);
|
||
|
TG = FNMS(KP692021471, TF, TE);
|
||
|
TX = FMA(KP554958132, TW, TR);
|
||
|
TY = FMA(KP801937735, TX, TM);
|
||
|
TH = FNMS(KP900968867, TG, T1);
|
||
|
ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH);
|
||
|
ri[WS(rs, 1)] = FMA(KP974927912, TY, TH);
|
||
|
}
|
||
|
{
|
||
|
E T1e, T1k, T1d, T1j, T1f;
|
||
|
T1d = FNMS(KP356895867, T1a, T19);
|
||
|
T1e = FNMS(KP692021471, T1d, T1b);
|
||
|
T1j = FMA(KP554958132, T1i, T1h);
|
||
|
T1k = FMA(KP801937735, T1j, T1g);
|
||
|
T1f = FNMS(KP900968867, T1e, T1c);
|
||
|
ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f);
|
||
|
ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f);
|
||
|
}
|
||
|
{
|
||
|
E T10, T13, TZ, T12, T11;
|
||
|
TZ = FNMS(KP356895867, Te, TE);
|
||
|
T10 = FNMS(KP692021471, TZ, Tr);
|
||
|
T12 = FMA(KP554958132, TM, TW);
|
||
|
T13 = FNMS(KP801937735, T12, TR);
|
||
|
T11 = FNMS(KP900968867, T10, T1);
|
||
|
ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11);
|
||
|
ri[WS(rs, 2)] = FMA(KP974927912, T13, T11);
|
||
|
}
|
||
|
{
|
||
|
E T1m, T1p, T1l, T1o, T1n;
|
||
|
T1l = FNMS(KP356895867, T19, T1b);
|
||
|
T1m = FNMS(KP692021471, T1l, T1a);
|
||
|
T1o = FMA(KP554958132, T1g, T1i);
|
||
|
T1p = FNMS(KP801937735, T1o, T1h);
|
||
|
T1n = FNMS(KP900968867, T1m, T1c);
|
||
|
ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n);
|
||
|
ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n);
|
||
|
}
|
||
|
{
|
||
|
E T15, T18, T14, T17, T16;
|
||
|
T14 = FNMS(KP356895867, TE, Tr);
|
||
|
T15 = FNMS(KP692021471, T14, Te);
|
||
|
T17 = FNMS(KP554958132, TR, TM);
|
||
|
T18 = FNMS(KP801937735, T17, TW);
|
||
|
T16 = FNMS(KP900968867, T15, T1);
|
||
|
ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16);
|
||
|
ri[WS(rs, 3)] = FMA(KP974927912, T18, T16);
|
||
|
}
|
||
|
{
|
||
|
E T1r, T1u, T1q, T1t, T1s;
|
||
|
T1q = FNMS(KP356895867, T1b, T1a);
|
||
|
T1r = FNMS(KP692021471, T1q, T19);
|
||
|
T1t = FNMS(KP554958132, T1h, T1g);
|
||
|
T1u = FNMS(KP801937735, T1t, T1i);
|
||
|
T1s = FNMS(KP900968867, T1r, T1c);
|
||
|
ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s);
|
||
|
ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 7 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_7) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_7, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 72 FP additions, 60 FP multiplications,
|
||
|
* (or, 36 additions, 24 multiplications, 36 fused multiply/add),
|
||
|
* 29 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/t.h"
|
||
|
|
||
|
static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
||
|
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
||
|
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
|
||
|
E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ;
|
||
|
T1 = ri[0];
|
||
|
TR = ii[0];
|
||
|
{
|
||
|
E T6, TA, Tb, TB;
|
||
|
{
|
||
|
E T3, T5, T2, T4;
|
||
|
T3 = ri[WS(rs, 1)];
|
||
|
T5 = ii[WS(rs, 1)];
|
||
|
T2 = W[0];
|
||
|
T4 = W[1];
|
||
|
T6 = FMA(T2, T3, T4 * T5);
|
||
|
TA = FNMS(T4, T3, T2 * T5);
|
||
|
}
|
||
|
{
|
||
|
E T8, Ta, T7, T9;
|
||
|
T8 = ri[WS(rs, 6)];
|
||
|
Ta = ii[WS(rs, 6)];
|
||
|
T7 = W[10];
|
||
|
T9 = W[11];
|
||
|
Tb = FMA(T7, T8, T9 * Ta);
|
||
|
TB = FNMS(T9, T8, T7 * Ta);
|
||
|
}
|
||
|
Tc = T6 + Tb;
|
||
|
TS = Tb - T6;
|
||
|
TC = TA - TB;
|
||
|
TO = TA + TB;
|
||
|
}
|
||
|
{
|
||
|
E Th, TG, Tm, TH;
|
||
|
{
|
||
|
E Te, Tg, Td, Tf;
|
||
|
Te = ri[WS(rs, 2)];
|
||
|
Tg = ii[WS(rs, 2)];
|
||
|
Td = W[2];
|
||
|
Tf = W[3];
|
||
|
Th = FMA(Td, Te, Tf * Tg);
|
||
|
TG = FNMS(Tf, Te, Td * Tg);
|
||
|
}
|
||
|
{
|
||
|
E Tj, Tl, Ti, Tk;
|
||
|
Tj = ri[WS(rs, 5)];
|
||
|
Tl = ii[WS(rs, 5)];
|
||
|
Ti = W[8];
|
||
|
Tk = W[9];
|
||
|
Tm = FMA(Ti, Tj, Tk * Tl);
|
||
|
TH = FNMS(Tk, Tj, Ti * Tl);
|
||
|
}
|
||
|
Tn = Th + Tm;
|
||
|
TT = Tm - Th;
|
||
|
TI = TG - TH;
|
||
|
TP = TG + TH;
|
||
|
}
|
||
|
{
|
||
|
E Ts, TD, Tx, TE;
|
||
|
{
|
||
|
E Tp, Tr, To, Tq;
|
||
|
Tp = ri[WS(rs, 3)];
|
||
|
Tr = ii[WS(rs, 3)];
|
||
|
To = W[4];
|
||
|
Tq = W[5];
|
||
|
Ts = FMA(To, Tp, Tq * Tr);
|
||
|
TD = FNMS(Tq, Tp, To * Tr);
|
||
|
}
|
||
|
{
|
||
|
E Tu, Tw, Tt, Tv;
|
||
|
Tu = ri[WS(rs, 4)];
|
||
|
Tw = ii[WS(rs, 4)];
|
||
|
Tt = W[6];
|
||
|
Tv = W[7];
|
||
|
Tx = FMA(Tt, Tu, Tv * Tw);
|
||
|
TE = FNMS(Tv, Tu, Tt * Tw);
|
||
|
}
|
||
|
Ty = Ts + Tx;
|
||
|
TU = Tx - Ts;
|
||
|
TF = TD - TE;
|
||
|
TQ = TD + TE;
|
||
|
}
|
||
|
ri[0] = T1 + Tc + Tn + Ty;
|
||
|
ii[0] = TO + TP + TQ + TR;
|
||
|
{
|
||
|
E TJ, Tz, TX, TY;
|
||
|
TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
|
||
|
Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
|
||
|
ri[WS(rs, 5)] = Tz - TJ;
|
||
|
ri[WS(rs, 2)] = Tz + TJ;
|
||
|
TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT);
|
||
|
TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO);
|
||
|
ii[WS(rs, 2)] = TX + TY;
|
||
|
ii[WS(rs, 5)] = TY - TX;
|
||
|
}
|
||
|
{
|
||
|
E TL, TK, TV, TW;
|
||
|
TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
|
||
|
TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
|
||
|
ri[WS(rs, 6)] = TK - TL;
|
||
|
ri[WS(rs, 1)] = TK + TL;
|
||
|
TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU);
|
||
|
TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP);
|
||
|
ii[WS(rs, 1)] = TV + TW;
|
||
|
ii[WS(rs, 6)] = TW - TV;
|
||
|
}
|
||
|
{
|
||
|
E TN, TM, TZ, T10;
|
||
|
TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
|
||
|
TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
|
||
|
ri[WS(rs, 4)] = TM - TN;
|
||
|
ri[WS(rs, 3)] = TM + TN;
|
||
|
TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT);
|
||
|
T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO);
|
||
|
ii[WS(rs, 3)] = TZ + T10;
|
||
|
ii[WS(rs, 4)] = T10 - TZ;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 0, 7 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_t1_7) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t1_7, &desc);
|
||
|
}
|
||
|
#endif
|