iup-stack/fftw/simd-support/simd-vsx.h

300 lines
8.2 KiB
C
Raw Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* VSX SIMD implementation added 2015 Erik Lindahl.
* Erik Lindahl places his modifications in the public domain.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
# error "VSX only works in single or double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## s
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## d
#endif
#define SIMD_SUFFIX _vsx /* for renaming */
#define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#include <altivec.h>
#include <stdio.h>
typedef DS(vector double,vector float) V;
#define VADD(a,b) vec_add(a,b)
#define VSUB(a,b) vec_sub(a,b)
#define VMUL(a,b) vec_mul(a,b)
#define VXOR(a,b) vec_xor(a,b)
#define UNPCKL(a,b) vec_mergel(a,b)
#define UNPCKH(a,b) vec_mergeh(a,b)
#ifdef FFTW_SINGLE
# define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
# define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
#else
# define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
# define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
#endif
static inline V LDK(R f) { return vec_splats(f); }
#define DVK(var, val) const R var = K(val)
static inline V VCONJ(V x)
{
const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
return vec_xor(x, pmpm);
}
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
#ifdef __ibmxl__
return vec_xl(0,(DS(double,float) *)x);
#else
return (*(const V *)(x));
#endif
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
#ifdef __ibmxl__
vec_xst(v,0,x);
#else
*(V *)x = v;
#endif
}
static inline V FLIP_RI(V x)
{
#ifdef FFTW_SINGLE
const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
#else
const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
#endif
return vec_perm(x,x,perm);
}
#ifdef FFTW_SINGLE
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
return vec_perm((vector float)vec_splats(*(double *)(x)),
(vector float)vec_splats(*(double *)(x+ivs)),perm);
}
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
*(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
*(double *)x = vec_extract( (vector double)v, 0 );
}
#else
/* DOUBLE */
# define LD LDA
# define ST STA
#endif
#define STM2 DS(STA,ST)
#define STN2(x, v0, v1, ovs) /* nop */
#ifdef FFTW_SINGLE
# define STM4(x, v, ovs, aligned_like) /* no-op */
static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
{
V xxx0, xxx1, xxx2, xxx3;
xxx0 = vec_mergeh(v0,v1);
xxx1 = vec_mergel(v0,v1);
xxx2 = vec_mergeh(v2,v3);
xxx3 = vec_mergel(v2,v3);
*(double *)x = vec_extract( (vector double)xxx0, 0 );
*(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 );
*(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 );
*(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 );
*(double *)(x+2) = vec_extract( (vector double)xxx2, 0 );
*(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 );
*(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
*(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
}
#else /* !FFTW_SINGLE */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
x[0] = vec_extract(v,0);
x[ovs] = vec_extract(v,1);
}
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif
static inline V VBYI(V x)
{
/* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
but gcc and xlc treat the permutation bits differently, and
gcc-6 seems to generate incorrect code when using
__builtin_crypto_vpermxor() (i.e., VBYI() works for a small
test case but fails in the large).
Punt on vpermxor() for now and do the simple thing.
*/
return FLIP_RI(VCONJ(x));
}
/* FMA support */
#define VFMA(a, b, c) vec_madd(a,b,c)
#define VFNMS(a, b, c) vec_nmsub(a,b,c)
#define VFMS(a, b, c) vec_msub(a,b,c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
static inline V VZMUL(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V VZMULJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
static inline V VZMULI(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMA(tr, sr, ti);
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
static inline V BYTW1(const R *t, V sr)
{
V tx = LDA(t,0,t);
V tr = UNPCKH(tx, tx);
V ti = UNPCKL(tx, tx);
tr = VMUL(tr, sr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LDA(t,0,t);
V tr = UNPCKH(tx, tx);
V ti = UNPCKL(tx, tx);
tr = VMUL(tr, sr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
#else /* !FFTW_SINGLE */
# define VTW1(v,x) {TW_CEXP, v, x}
static inline V BYTW1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMULJ(tx, sr);
}
#endif
#define TWVL1 (VL)
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else /* !FFTW_SINGLE */
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
V si = FLIP_RI(sr);
V ti = LDA(t+2*VL,0,t);
V tt = VMUL(ti, si);
V tr = LDA(t,0,t);
return VFMA(tr, sr, tt);
}
static inline V BYTWJ2(const R *t, V sr)
{
V si = FLIP_RI(sr);
V tr = LDA(t,0,t);
V tt = VMUL(tr, sr);
V ti = LDA(t+2*VL,0,t);
return VFNMS(ti, si, tt);
}
/* twiddle storage #3 */
#ifdef FFTW_SINGLE
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
# define TWVL3 (VL)
#else
# define VTW3(v,x) VTW1(v,x)
# define TWVL3 TWVL1
#endif
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)
#define VLEAVE() /* nothing */
#include "simd-common.h"