iup-stack/fftw/simd-support/simd-avx.h

405 lines
12 KiB
C
Raw Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "AVX only works in single or double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## s
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## d
#endif
#define SIMD_SUFFIX _avx /* for renaming */
#define VL DS(2, 4) /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) ((x) == 2)
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#if defined(__GNUC__) && !defined(__AVX__) /* sanity check */
#error "compiling simd-avx.h without -mavx"
#endif
#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif
#include <immintrin.h>
typedef DS(__m256d, __m256) V;
#define VADD SUFF(_mm256_add_p)
#define VSUB SUFF(_mm256_sub_p)
#define VMUL SUFF(_mm256_mul_p)
#define VXOR SUFF(_mm256_xor_p)
#define VSHUF SUFF(_mm256_shuffle_p)
#define SHUFVALD(fp0,fp1) \
(((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
#define SHUFVALS(fp0,fp1,fp2,fp3) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
#define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2)))
#define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3)))
#define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
#define DVK(var, val) V var = VLIT(val, val)
#define LDK(x) x
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ivs; /* UNUSED */
return SUFF(_mm256_loadu_p)(x);
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ovs; /* UNUSED */
SUFF(_mm256_storeu_p)(x, v);
}
#if FFTW_SINGLE
# ifdef _MSC_VER
/* Temporarily disable the warning "uninitialized local variable
'name' used" and runtime checks for using a variable before it is
defined which is erroneously triggered by the LOADL0 / LOADH macros
as they only modify VAL partly each. */
# ifndef __INTEL_COMPILER
# pragma warning(disable : 4700)
# pragma runtime_checks("u", off)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(disable : 592)
# endif
#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
#define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
#define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
/* it seems like the only AVX way to store 4 complex floats is to
extract two pairs of complex floats into two __m128 registers, and
then use SSE-like half-stores. Similarly, to load 4 complex
floats, we load two pairs of complex floats into two __m128
registers, and then pack the two __m128 registers into one __m256
value. */
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
__m128 l, h;
V v;
(void)aligned_like; /* UNUSED */
l = LOADL(x, l);
l = LOADH(x + ivs, l);
h = LOADL(x + 2*ivs, h);
h = LOADH(x + 3*ivs, h);
v = _mm256_castps128_ps256(l);
v = _mm256_insertf128_ps(v, h, 1);
return v;
}
# ifdef _MSC_VER
# ifndef __INTEL_COMPILER
# pragma warning(default : 4700)
# pragma runtime_checks("u", restore)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(default : 592)
# endif
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
__m128 h = _mm256_extractf128_ps(v, 1);
__m128 l = _mm256_castps256_ps128(v);
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon STOREL occurring
after STOREH */
STOREH(x + 3*ovs, h);
STOREL(x + 2*ovs, h);
STOREH(x + ovs, l);
STOREL(x, l);
}
#define STM2(x, v, ovs, aligned_like) /* no-op */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
__m128 h0 = _mm256_extractf128_ps(x0, 1);
__m128 l0 = _mm256_castps256_ps128(x0);
__m128 h1 = _mm256_extractf128_ps(x1, 1);
__m128 l1 = _mm256_castps256_ps128(x1);
*(__m128 *)(x + 3*ovs) = h1;
*(__m128 *)(x + 2*ovs) = h0;
*(__m128 *)(x + 1*ovs) = l1;
*(__m128 *)(x + 0*ovs) = l0;
}
#define STM4(x, v, ovs, aligned_like) /* no-op */
#define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
V yyy0, yyy1, yyy2, yyy3; \
xxx0 = _mm256_unpacklo_ps(v0, v2); \
xxx1 = _mm256_unpackhi_ps(v0, v2); \
xxx2 = _mm256_unpacklo_ps(v1, v3); \
xxx3 = _mm256_unpackhi_ps(v1, v3); \
yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
*(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
*(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
*(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
*(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
*(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
*(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
*(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
*(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
}
#else
static inline __m128d VMOVAPD_LD(const R *x)
{
/* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
into a 256-bit vmovapd, which requires 32-byte aligment instead of
16-byte alignment.
Force the use of vmovapd via asm until compilers stabilize.
*/
#if defined(__GNUC__)
__m128d var;
__asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
return var;
#else
return *(const __m128d *)x;
#endif
}
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
V var;
(void)aligned_like; /* UNUSED */
var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
return var;
}
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon the store of the low
part occurring after the store of the high part */
*(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
*(__m128d *)x = _mm256_castpd256_pd128(v);
}
#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */
#define STM4(x, v, ovs, aligned_like) /* no-op */
/* STN4 is a macro, not a function, thanks to Visual C++ developers
deciding "it would be infrequent that people would want to pass more
than 3 [__m128 parameters] by value." Even though the comment
was made about __m128 parameters, it appears to apply to __m256
parameters as well. */
#define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
xxx0 = _mm256_unpacklo_pd(v0, v1); \
xxx1 = _mm256_unpackhi_pd(v0, v1); \
xxx2 = _mm256_unpacklo_pd(v2, v3); \
xxx3 = _mm256_unpackhi_pd(v2, v3); \
STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
}
#endif
static inline V FLIP_RI(V x)
{
return VSHUF(x, x,
DS(SHUFVALD(1, 0),
SHUFVALS(1, 0, 3, 2)));
}
static inline V VCONJ(V x)
{
/* Produce a SIMD vector[VL] of (0 + -0i).
We really want to write this:
V pmpm = VLIT(-0.0, 0.0);
but historically some compilers have ignored the distiction
between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0
as 0 too.
*/
union uvec {
unsigned u[8];
V v;
};
static const union uvec pmpm = {
#ifdef FFTW_SINGLE
{ 0x00000000, 0x80000000, 0x00000000, 0x80000000,
0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
{ 0x00000000, 0x00000000, 0x00000000, 0x80000000,
0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
};
return VXOR(pmpm.v, x);
}
static inline V VBYI(V x)
{
return FLIP_RI(VCONJ(x));
}
/* FMA support */
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
static inline V VZMUL(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V VZMULJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
static inline V VZMULI(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMA(tr, sr, ti);
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
#else
# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#endif
#define TWVL1 (VL)
static inline V BYTW1(const R *t, V sr)
{
return VZMUL(LDA(t, 2, t), sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
return VZMULJ(LDA(t, 2, t), sr);
}
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
{TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
#else
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#define VTW3 VTW1
#define TWVL3 TWVL1
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
{TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#endif
#define TWVLS (2 * VL)
/* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE.
See Intel Optimization Manual (April 2011, version 248966), Section
11.3 */
#define VLEAVE _mm256_zeroupper
#include "simd-common.h"