iup-stack/fftw/doc/html/The-1d-Real_002ddata-DFT.html

116 lines
5.1 KiB
HTML
Raw Normal View History

2023-02-20 16:44:45 +00:00
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual is for FFTW
(version 3.3.10, 10 December 2020).
Copyright (C) 2003 Matteo Frigo.
Copyright (C) 2003 Massachusetts Institute of Technology.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the Free Software Foundation. -->
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>The 1d Real-data DFT (FFTW 3.3.10)</title>
<meta name="description" content="The 1d Real-data DFT (FFTW 3.3.10)">
<meta name="keywords" content="The 1d Real-data DFT (FFTW 3.3.10)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="What-FFTW-Really-Computes.html" rel="up" title="What FFTW Really Computes">
<link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html" rel="next" title="1d Real-even DFTs (DCTs)">
<link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html" rel="prev" title="The 1d Discrete Fourier Transform (DFT)">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<span id="The-1d-Real_002ddata-DFT"></span><div class="header">
<p>
Next: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html" accesskey="n" rel="next">1d Real-even DFTs (DCTs)</a>, Previous: <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html" accesskey="p" rel="prev">The 1d Discrete Fourier Transform (DFT)</a>, Up: <a href="What-FFTW-Really-Computes.html" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="The-1d-Real_002ddata-DFT-1"></span><h4 class="subsection">4.8.2 The 1d Real-data DFT</h4>
<p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform
<em>Y</em> of the size <code>n</code> real array <em>X</em>, exactly as defined
above, i.e.
<center><img src="equation-dft.png" align="top">.</center>
This output array <em>Y</em> can easily be shown to possess the
&ldquo;Hermitian&rdquo; symmetry
<span id="index-Hermitian-1"></span>
<i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>,
where we take <em>Y</em> to be periodic so that
<i>Y<sub>n</sub> = Y</i><sub>0</sub>.
</p>
<p>As a result of this symmetry, half of the output <em>Y</em> is redundant
(being the complex conjugate of the other half), and so the 1d r2c
transforms only output elements <em>0</em>&hellip;<em>n/2</em> of <em>Y</em>
(<em>n/2+1</em> complex numbers), where the division by <em>2</em> is
rounded down.
</p>
<p>Moreover, the Hermitian symmetry implies that
<i>Y</i><sub>0</sub>
and, if <em>n</em> is even, the
<i>Y</i><sub><i>n</i>/2</sub>
element, are purely real. So, for the <code>R2HC</code> r2r transform, the
halfcomplex format does not store the imaginary parts of these elements.
<span id="index-r2r-2"></span>
<span id="index-R2HC"></span>
<span id="index-halfcomplex-format-2"></span>
</p>
<p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the
<em>complex</em> array <em>X</em> with Hermitian symmetry, stored in the
r2c/<code>R2HC</code> output formats, respectively, where the backward
transform is defined exactly as for the complex case:
<center><img src="equation-idft.png" align="top">.</center>
The outputs <code>Y</code> of this transform can easily be seen to be purely
real, and are stored as an array of real numbers.
</p>
<span id="index-normalization-9"></span>
<p>Like FFTW&rsquo;s complex DFT, these transforms are unnormalized. In other
words, applying the real-to-complex (forward) and then the
complex-to-real (backward) transform will multiply the input by
<em>n</em>.
</p>
</body>
</html>