iup-stack/fftw/simd-support/simd-sse2.h

381 lines
10 KiB
C
Raw Permalink Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
# error "SSE/SSE2 only works in single/double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## s
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## d
#endif
#define SIMD_SUFFIX _sse2 /* for renaming */
#define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__)
# error "compiling simd-sse2.h in double precision without -msse2"
#elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__)
# error "compiling simd-sse2.h in single precision without -msse"
#endif
#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif
/* some versions of glibc's sys/cdefs.h define __inline to be empty,
which is wrong because emmintrin.h defines several inline
procedures */
#ifndef _MSC_VER
#undef __inline
#endif
#ifdef FFTW_SINGLE
# include <xmmintrin.h>
#else
# include <emmintrin.h>
#endif
typedef DS(__m128d,__m128) V;
#define VADD SUFF(_mm_add_p)
#define VSUB SUFF(_mm_sub_p)
#define VMUL SUFF(_mm_mul_p)
#define VXOR SUFF(_mm_xor_p)
#define SHUF SUFF(_mm_shuffle_p)
#define UNPCKL SUFF(_mm_unpacklo_p)
#define UNPCKH SUFF(_mm_unpackhi_p)
#define SHUFVALS(fp0,fp1,fp2,fp3) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
#define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2)))
#define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3)))
#define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
#define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
#ifdef __GNUC__
/*
* gcc-3.3 generates slow code for mm_set_ps (write all elements to
* the stack and load __m128 from the stack).
*
* gcc-3.[34] generates slow code for mm_set_ps1 (load into low element
* and shuffle).
*
* This hack forces gcc to generate a constant __m128 at compile time.
*/
union rvec {
R r[DS(2,4)];
V v;
};
# ifdef FFTW_SINGLE
# define DVK(var, val) V var = __extension__ ({ \
static const union rvec _var = { {val,val,val,val} }; _var.v; })
# else
# define DVK(var, val) V var = __extension__ ({ \
static const union rvec _var = { {val,val} }; _var.v; })
# endif
# define LDK(x) x
#else
# define DVK(var, val) const R var = K(val)
# define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x)
#endif
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ivs; /* UNUSED */
return *(const V *)x;
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ovs; /* UNUSED */
*(V *)x = v;
}
#ifdef FFTW_SINGLE
# ifdef _MSC_VER
/* Temporarily disable the warning "uninitialized local variable
'name' used" and runtime checks for using a variable before it is
defined which is erroneously triggered by the LOADL0 / LOADH macros
as they only modify VAL partly each. */
# ifndef __INTEL_COMPILER
# pragma warning(disable : 4700)
# pragma runtime_checks("u", off)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(disable : 592)
# endif
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
V var;
(void)aligned_like; /* UNUSED */
# ifdef __GNUC__
/* We use inline asm because gcc-3.x generates slow code for
_mm_loadh_pi(). gcc-3.x insists upon having an existing variable for
VAL, which is however never used. Thus, it generates code to move
values in and out the variable. Worse still, gcc-4.0 stores VAL on
the stack, causing valgrind to complain about uninitialized reads. */
__asm__("movlps %1, %0\n\tmovhps %2, %0"
: "=x"(var) : "m"(x[0]), "m"(x[ivs]));
# else
# define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
# define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
var = LOADL0(x, var);
var = LOADH(x + ivs, var);
# endif
return var;
}
# ifdef _MSC_VER
# ifndef __INTEL_COMPILER
# pragma warning(default : 4700)
# pragma runtime_checks("u", restore)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(default : 592)
# endif
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon STOREL occurring
after STOREH */
STOREH(x + ovs, v);
STOREL(x, v);
}
#else /* ! FFTW_SINGLE */
# define LD LDA
# define ST STA
#endif
#define STM2 DS(STA,ST)
#define STN2(x, v0, v1, ovs) /* nop */
#ifdef FFTW_SINGLE
# define STM4(x, v, ovs, aligned_like) /* no-op */
/* STN4 is a macro, not a function, thanks to Visual C++ developers
deciding "it would be infrequent that people would want to pass more
than 3 [__m128 parameters] by value." 3 parameters ought to be enough
for anybody. */
# define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
xxx0 = UNPCKL(v0, v2); \
xxx1 = UNPCKH(v0, v2); \
xxx2 = UNPCKL(v1, v3); \
xxx3 = UNPCKH(v1, v3); \
STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
}
#else /* !FFTW_SINGLE */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
STOREL(x, v);
STOREH(x + ovs, v);
}
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif
static inline V FLIP_RI(V x)
{
return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2)));
}
static inline V VCONJ(V x)
{
/* This will produce -0.0f (or -0.0d) even on broken
compilers that do not distinguish +0.0 from -0.0.
I bet some are still around. */
union uvec {
unsigned u[4];
V v;
};
/* it looks like gcc-3.3.5 produces slow code unless PM is
declared static. */
static const union uvec pm = {
#ifdef FFTW_SINGLE
{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
{ 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
};
return VXOR(pm.v, x);
}
static inline V VBYI(V x)
{
x = VCONJ(x);
x = FLIP_RI(x);
return x;
}
/* FMA support */
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
static inline V VZMUL(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V VZMULJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
static inline V VZMULI(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMA(tr, sr, ti);
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
static inline V BYTW1(const R *t, V sr)
{
const V *twp = (const V *)t;
V tx = twp[0];
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
tr = VMUL(tr, sr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V BYTWJ1(const R *t, V sr)
{
const V *twp = (const V *)t;
V tx = twp[0];
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
tr = VMUL(tr, sr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
#else /* !FFTW_SINGLE */
# define VTW1(v,x) {TW_CEXP, v, x}
static inline V BYTW1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMULJ(tx, sr);
}
#endif
#define TWVL1 (VL)
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else /* !FFTW_SINGLE */
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#ifdef FFTW_SINGLE
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
# define TWVL3 (VL)
#else
# define VTW3(v,x) VTW1(v,x)
# define TWVL3 TWVL1
#endif
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)
#define VLEAVE() /* nothing */
#include "simd-common.h"