iup-stack/fftw/mpi/transpose-recurse.c

301 lines
9.7 KiB
C
Raw Permalink Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Recursive "radix-r" distributed transpose, which breaks a transpose
over p processes into p/r transposes over r processes plus r
transposes over p/r processes. If performed recursively, this
produces a total of O(p log p) messages vs. O(p^2) messages for a
direct approach.
However, this is not necessarily an improvement. The total size of
all the messages is actually increased from O(N) to O(N log p)
where N is the total data size. Also, the amount of local data
rearrangement is increased. So, it's not clear, a priori, what the
best algorithm will be, and we'll leave it to the planner. (In
theory and practice, it looks like this becomes advantageous for
large p, in the limit where the message sizes are small and
latency-dominated.)
*/
#include "mpi-transpose.h"
#include <string.h>
typedef struct {
solver super;
int (*radix)(int np);
const char *nam;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_transpose super;
plan *cld1, *cldtr, *cldtm;
int preserve_input;
int r; /* "radix" */
const char *nam;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld1, *cldtr, *cldtm;
cld1 = (plan_rdft *) ego->cld1;
if (cld1) cld1->apply((plan *) cld1, I, O);
if (ego->preserve_input) I = O;
cldtr = (plan_rdft *) ego->cldtr;
if (cldtr) cldtr->apply((plan *) cldtr, O, I);
cldtm = (plan_rdft *) ego->cldtm;
if (cldtm) cldtm->apply((plan *) cldtm, I, O);
}
static int radix_sqrt(int np)
{
int r;
for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
;
return r;
}
static int radix_first(int np)
{
int r = (int) (X(first_divisor)(np));
return (r >= (int) (X(isqrt)(np)) ? 0 : r);
}
/* the local allocated space on process pe required for the given transpose
dimensions and block sizes */
static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
{
return X(imax)(XM(block)(nx, block, pe) * ny,
nx * XM(block)(ny, tblock, pe));
}
/* check whether the recursive transposes fit within the space
that must have been allocated on each process for this transpose;
this must be modified if the subdivision in mkplan is changed! */
static int enough_space(INT nx, INT ny, INT block, INT tblock,
int r, int n_pes)
{
int pe;
int m = n_pes / r;
for (pe = 0; pe < n_pes; ++pe) {
INT space = transpose_space(nx, ny, block, tblock, pe);
INT b1 = XM(block)(nx, r * block, pe / r);
INT b2 = XM(block)(ny, m * tblock, pe % r);
if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
|| transpose_space(nx, b2, r*block, tblock, pe / r) > space)
return 0;
}
return 1;
}
/* In theory, transpose-recurse becomes advantageous for message sizes
below some minimum, assuming that the time is dominated by
communications. In practice, we want to constrain the minimum
message size for transpose-recurse to keep the planning time down.
I've set this conservatively according to some simple experiments
on a Cray XT3 where the crossover message size was 128, although on
a larger-latency machine the crossover will be larger. */
#define SMALL_MESSAGE 2048
static int applicable(const S *ego, const problem *p_,
const planner *plnr, int *r)
{
const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
int n_pes;
MPI_Comm_size(p->comm, &n_pes);
return (1
&& p->tblock * n_pes == p->ny
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
&& enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
&& (!CONSERVE_MEMORYP(plnr) || *r > 8
|| !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
&& (!NO_SLOWP(plnr) ||
(p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
&& ONLY_TRANSPOSEDP(p->flags)
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cldtr, wakefulness);
X(plan_awake)(ego->cldtm, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldtm);
X(plan_destroy_internal)(ego->cldtr);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
ego->cld1, ego->cldtr, ego->cldtm);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_transpose *p;
P *pln;
plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
R *I, *O;
int me, np, r, m;
INT b;
MPI_Comm comm2;
static const plan_adt padt = {
XM(transpose_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr, &r))
return (plan *) 0;
p = (const problem_mpi_transpose *) p_;
MPI_Comm_size(p->comm, &np);
MPI_Comm_rank(p->comm, &me);
m = np / r;
A(r * m == np);
I = p->I; O = p->O;
b = XM(block)(p->nx, p->block, me);
A(p->tblock * np == p->ny); /* this is currently required for cld1 */
if (p->flags & TRANSPOSED_IN) {
/* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
INT vn = p->vn * b * p->tblock;
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_0_d)(X(mktensor_3d)
(m, r*vn, vn,
r, vn, m*vn,
vn, 1, 1),
I, O),
0, 0, NO_SLOW);
}
else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
/* b x m x r x bt x vn -> r x m x bt x b x vn */
INT vn = p->vn;
INT bt = p->tblock;
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_0_d)(X(mktensor_5d)
(b, m*r*bt*vn, vn,
m, r*bt*vn, bt*b*vn,
r, bt*vn, m*bt*b*vn,
bt, vn, b*vn,
vn, 1, 1),
I, O),
0, 0, NO_SLOW);
}
else { /* TRANSPOSED_IN permutation must be separate for in-place */
/* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
INT vn = p->vn * p->tblock;
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_0_d)(X(mktensor_4d)
(m, r*vn, vn,
r, vn, m*vn,
vn, 1, 1,
b, np*vn, np*vn),
I, O),
0, 0, NO_SLOW);
}
if (XM(any_true)(!cld1, p->comm)) goto nada;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
b = XM(block)(p->nx, r * p->block, me / r);
MPI_Comm_split(p->comm, me / r, me, &comm2);
if (b)
cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
(b, p->ny, p->vn,
O, I, p->block, m * p->tblock, comm2,
p->I != p->O
? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
MPI_Comm_free(&comm2);
if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
b = XM(block)(p->ny, m * p->tblock, me % r);
MPI_Comm_split(p->comm, me % r, me, &comm2);
if (b)
cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
(p->nx, b, p->vn,
I, O, r * p->block, p->tblock, comm2,
TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
MPI_Comm_free(&comm2);
if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
pln->cld1 = cld1;
pln->cldtr = cldtr;
pln->cldtm = cldtm;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->r = r;
pln->nam = ego->nam;
pln->super.super.ops = cld1->ops;
if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldtm);
X(plan_destroy_internal)(cldtr);
X(plan_destroy_internal)(cld1);
return (plan *) 0;
}
static solver *mksolver(int preserve_input,
int (*radix)(int np), const char *nam)
{
static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->preserve_input = preserve_input;
slv->radix = radix;
slv->nam = nam;
return &(slv->super);
}
void XM(transpose_recurse_register)(planner *p)
{
int preserve_input;
for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
}
}