iup-stack/fftw/mpi/transpose-alltoall.c

266 lines
8.1 KiB
C
Raw Permalink Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* plans for distributed out-of-place transpose using MPI_Alltoall,
and which destroy the input array (unless TRANSPOSED_IN is used) */
#include "mpi-transpose.h"
#include <string.h>
typedef struct {
solver super;
int copy_transposed_in; /* whether to copy the input for TRANSPOSED_IN,
which makes the final transpose out-of-place
but costs an extra copy and requires us
to destroy the input */
} S;
typedef struct {
plan_mpi_transpose super;
plan *cld1, *cld2, *cld2rest, *cld3;
MPI_Comm comm;
int *send_block_sizes, *send_block_offsets;
int *recv_block_sizes, *recv_block_offsets;
INT rest_Ioff, rest_Ooff;
int equal_blocks;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld1, *cld2, *cld2rest, *cld3;
/* transpose locally to get contiguous chunks */
cld1 = (plan_rdft *) ego->cld1;
if (cld1) {
cld1->apply(ego->cld1, I, O);
/* transpose chunks globally */
if (ego->equal_blocks)
MPI_Alltoall(O, ego->send_block_sizes[0], FFTW_MPI_TYPE,
I, ego->recv_block_sizes[0], FFTW_MPI_TYPE,
ego->comm);
else
MPI_Alltoallv(O, ego->send_block_sizes, ego->send_block_offsets,
FFTW_MPI_TYPE,
I, ego->recv_block_sizes, ego->recv_block_offsets,
FFTW_MPI_TYPE,
ego->comm);
}
else { /* TRANSPOSED_IN, no need to destroy input */
/* transpose chunks globally */
if (ego->equal_blocks)
MPI_Alltoall(I, ego->send_block_sizes[0], FFTW_MPI_TYPE,
O, ego->recv_block_sizes[0], FFTW_MPI_TYPE,
ego->comm);
else
MPI_Alltoallv(I, ego->send_block_sizes, ego->send_block_offsets,
FFTW_MPI_TYPE,
O, ego->recv_block_sizes, ego->recv_block_offsets,
FFTW_MPI_TYPE,
ego->comm);
I = O; /* final transpose (if any) is in-place */
}
/* transpose locally, again, to get ordinary row-major */
cld2 = (plan_rdft *) ego->cld2;
if (cld2) {
cld2->apply(ego->cld2, I, O);
cld2rest = (plan_rdft *) ego->cld2rest;
if (cld2rest) { /* leftover from unequal block sizes */
cld2rest->apply(ego->cld2rest,
I + ego->rest_Ioff, O + ego->rest_Ooff);
cld3 = (plan_rdft *) ego->cld3;
if (cld3)
cld3->apply(ego->cld3, O, O);
/* else TRANSPOSED_OUT is true and user wants O transposed */
}
}
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
return (1
&& p->I != p->O
&& (!NO_DESTROY_INPUTP(plnr) ||
((p->flags & TRANSPOSED_IN) && !ego->copy_transposed_in))
&& ((p->flags & TRANSPOSED_IN) || !ego->copy_transposed_in)
&& ONLY_TRANSPOSEDP(p->flags)
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
X(plan_awake)(ego->cld2rest, wakefulness);
X(plan_awake)(ego->cld3, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(ifree0)(ego->send_block_sizes);
MPI_Comm_free(&ego->comm);
X(plan_destroy_internal)(ego->cld3);
X(plan_destroy_internal)(ego->cld2rest);
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-transpose-alltoall%s%(%p%)%(%p%)%(%p%)%(%p%))",
ego->equal_blocks ? "/e" : "",
ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_transpose *p;
P *pln;
plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
INT b, bt, vn, rest_Ioff, rest_Ooff;
R *I;
int *sbs, *sbo, *rbs, *rbo;
int pe, my_pe, n_pes;
int equal_blocks = 1;
static const plan_adt padt = {
XM(transpose_solve), awake, print, destroy
};
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_transpose *) p_;
vn = p->vn;
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
b = XM(block)(p->nx, p->block, my_pe);
if (p->flags & TRANSPOSED_IN) { /* I is already transposed */
if (ego->copy_transposed_in) {
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_0_d)(X(mktensor_1d)
(b * p->ny * vn, 1, 1),
I = p->I, p->O),
0, 0, NO_SLOW);
if (XM(any_true)(!cld1, p->comm)) goto nada;
}
else
I = p->O; /* final transpose is in-place */
}
else { /* transpose b x ny x vn -> ny x b x vn */
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_0_d)(X(mktensor_3d)
(b, p->ny * vn, vn,
p->ny, vn, b * vn,
vn, 1, 1),
I = p->I, p->O),
0, 0, NO_SLOW);
if (XM(any_true)(!cld1, p->comm)) goto nada;
}
if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, p->O, my_pe,
&cld2, &cld2rest, &cld3,
&rest_Ioff, &rest_Ooff),
p->comm)) goto nada;
pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
pln->cld1 = cld1;
pln->cld2 = cld2;
pln->cld2rest = cld2rest;
pln->rest_Ioff = rest_Ioff;
pln->rest_Ooff = rest_Ooff;
pln->cld3 = cld3;
MPI_Comm_dup(p->comm, &pln->comm);
/* Compute sizes/offsets of blocks to send for all-to-all command. */
sbs = (int *) MALLOC(4 * n_pes * sizeof(int), PLANS);
sbo = sbs + n_pes;
rbs = sbo + n_pes;
rbo = rbs + n_pes;
b = XM(block)(p->nx, p->block, my_pe);
bt = XM(block)(p->ny, p->tblock, my_pe);
for (pe = 0; pe < n_pes; ++pe) {
INT db, dbt; /* destination block sizes */
db = XM(block)(p->nx, p->block, pe);
dbt = XM(block)(p->ny, p->tblock, pe);
if (db != p->block || dbt != p->tblock)
equal_blocks = 0;
/* MPI requires type "int" here; apparently it
has no 64-bit API? Grrr. */
sbs[pe] = (int) (b * dbt * vn);
sbo[pe] = (int) (pe * (b * p->tblock) * vn);
rbs[pe] = (int) (db * bt * vn);
rbo[pe] = (int) (pe * (p->block * bt) * vn);
}
pln->send_block_sizes = sbs;
pln->send_block_offsets = sbo;
pln->recv_block_sizes = rbs;
pln->recv_block_offsets = rbo;
pln->equal_blocks = equal_blocks;
X(ops_zero)(&pln->super.super.ops);
if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
/* FIXME: should MPI operations be counted in "other" somehow? */
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld3);
X(plan_destroy_internal)(cld2rest);
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cld1);
return (plan *) 0;
}
static solver *mksolver(int copy_transposed_in)
{
static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->copy_transposed_in = copy_transposed_in;
return &(slv->super);
}
void XM(transpose_alltoall_register)(planner *p)
{
int cti;
for (cti = 0; cti <= 1; ++cti)
REGISTER_SOLVER(p, mksolver(cti));
}