iup-stack/fftw/dft/scalar/codelets/t1_64.c

4106 lines
101 KiB
C
Raw Permalink Normal View History

2023-02-20 16:44:45 +00:00
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:29 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
/*
* This function contains 1038 FP additions, 644 FP multiplications,
* (or, 520 additions, 126 multiplications, 518 fused multiply/add),
* 190 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X;
E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm;
E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B;
E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH;
E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm;
E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV;
E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h;
E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr;
E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu;
{
E T1, TiT, T7, TiS, Te, T7a, Tk, T7c;
T1 = ri[0];
TiT = ii[0];
{
E T3, T6, T4, TiR, T2, T5;
T3 = ri[WS(rs, 32)];
T6 = ii[WS(rs, 32)];
T2 = W[62];
T4 = T2 * T3;
TiR = T2 * T6;
T5 = W[63];
T7 = FMA(T5, T6, T4);
TiS = FNMS(T5, T3, TiR);
}
{
E Ta, Td, Tb, T79, T9, Tc;
Ta = ri[WS(rs, 16)];
Td = ii[WS(rs, 16)];
T9 = W[30];
Tb = T9 * Ta;
T79 = T9 * Td;
Tc = W[31];
Te = FMA(Tc, Td, Tb);
T7a = FNMS(Tc, Ta, T79);
}
{
E Tg, Tj, Th, T7b, Tf, Ti;
Tg = ri[WS(rs, 48)];
Tj = ii[WS(rs, 48)];
Tf = W[94];
Th = Tf * Tg;
T7b = Tf * Tj;
Ti = W[95];
Tk = FMA(Ti, Tj, Th);
T7c = FNMS(Ti, Tg, T7b);
}
{
E T8, Tl, TjP, TjQ;
T8 = T1 + T7;
Tl = Te + Tk;
Tm = T8 + Tl;
TeM = T8 - Tl;
TjP = TiT - TiS;
TjQ = Te - Tk;
TjR = TjP - TjQ;
Tkl = TjQ + TjP;
}
{
E T78, T7d, TiQ, TiU;
T78 = T1 - T7;
T7d = T7a - T7c;
T7e = T78 - T7d;
TcA = T78 + T7d;
TiQ = T7a + T7c;
TiU = TiS + TiT;
TiV = TiQ + TiU;
Tjm = TiU - TiQ;
}
}
{
E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T;
{
E T1h, T1k, T1i, T7K, T1g, T1j;
T1h = ri[WS(rs, 60)];
T1k = ii[WS(rs, 60)];
T1g = W[118];
T1i = T1g * T1h;
T7K = T1g * T1k;
T1j = W[119];
T1l = FMA(T1j, T1k, T1i);
T7L = FNMS(T1j, T1h, T7K);
}
{
E T1A, T1D, T1B, T7U, T1z, T1C;
T1A = ri[WS(rs, 44)];
T1D = ii[WS(rs, 44)];
T1z = W[86];
T1B = T1z * T1A;
T7U = T1z * T1D;
T1C = W[87];
T1E = FMA(T1C, T1D, T1B);
T7V = FNMS(T1C, T1A, T7U);
}
{
E T1n, T1q, T1o, T7M, T1m, T1p;
T1n = ri[WS(rs, 28)];
T1q = ii[WS(rs, 28)];
T1m = W[54];
T1o = T1m * T1n;
T7M = T1m * T1q;
T1p = W[55];
T1r = FMA(T1p, T1q, T1o);
T7N = FNMS(T1p, T1n, T7M);
}
{
E T1u, T1x, T1v, T7S, T1t, T1w;
T1u = ri[WS(rs, 12)];
T1x = ii[WS(rs, 12)];
T1t = W[22];
T1v = T1t * T1u;
T7S = T1t * T1x;
T1w = W[23];
T1y = FMA(T1w, T1x, T1v);
T7T = FNMS(T1w, T1u, T7S);
}
{
E T1s, T1F, TeX, TeY;
T1s = T1l + T1r;
T1F = T1y + T1E;
T1G = T1s + T1F;
TeW = T1s - T1F;
TeX = T7L + T7N;
TeY = T7T + T7V;
TeZ = TeX - TeY;
Ths = TeX + TeY;
}
{
E T7O, T7P, T7R, T7W;
T7O = T7L - T7N;
T7P = T1y - T1E;
T7Q = T7O + T7P;
TcJ = T7O - T7P;
T7R = T1l - T1r;
T7W = T7T - T7V;
T7X = T7R - T7W;
TcI = T7R + T7W;
}
}
{
E T1O, T82, T27, T8s, T1U, T84, T21, T8q;
{
E T1K, T1N, T1L, T81, T1J, T1M;
T1K = ri[WS(rs, 2)];
T1N = ii[WS(rs, 2)];
T1J = W[2];
T1L = T1J * T1K;
T81 = T1J * T1N;
T1M = W[3];
T1O = FMA(T1M, T1N, T1L);
T82 = FNMS(T1M, T1K, T81);
}
{
E T23, T26, T24, T8r, T22, T25;
T23 = ri[WS(rs, 50)];
T26 = ii[WS(rs, 50)];
T22 = W[98];
T24 = T22 * T23;
T8r = T22 * T26;
T25 = W[99];
T27 = FMA(T25, T26, T24);
T8s = FNMS(T25, T23, T8r);
}
{
E T1Q, T1T, T1R, T83, T1P, T1S;
T1Q = ri[WS(rs, 34)];
T1T = ii[WS(rs, 34)];
T1P = W[66];
T1R = T1P * T1Q;
T83 = T1P * T1T;
T1S = W[67];
T1U = FMA(T1S, T1T, T1R);
T84 = FNMS(T1S, T1Q, T83);
}
{
E T1X, T20, T1Y, T8p, T1W, T1Z;
T1X = ri[WS(rs, 18)];
T20 = ii[WS(rs, 18)];
T1W = W[34];
T1Y = T1W * T1X;
T8p = T1W * T20;
T1Z = W[35];
T21 = FMA(T1Z, T20, T1Y);
T8q = FNMS(T1Z, T1X, T8p);
}
{
E T1V, T28, Tf3, Tf4;
T1V = T1O + T1U;
T28 = T21 + T27;
T29 = T1V + T28;
Tf8 = T1V - T28;
Tf3 = T82 + T84;
Tf4 = T8q + T8s;
Tf5 = Tf3 - Tf4;
Thv = Tf3 + Tf4;
}
{
E T85, T86, T8o, T8t;
T85 = T82 - T84;
T86 = T21 - T27;
T87 = T85 + T86;
TcN = T85 - T86;
T8o = T1O - T1U;
T8t = T8q - T8s;
T8u = T8o - T8t;
TcQ = T8o + T8t;
}
}
{
E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf;
{
E T5l, T5o, T5m, Tak, T5k, T5n;
T5l = ri[WS(rs, 63)];
T5o = ii[WS(rs, 63)];
T5k = W[124];
T5m = T5k * T5l;
Tak = T5k * T5o;
T5n = W[125];
T5p = FMA(T5n, T5o, T5m);
Tal = FNMS(T5n, T5l, Tak);
}
{
E T5E, T5H, T5F, Tbg, T5D, T5G;
T5E = ri[WS(rs, 47)];
T5H = ii[WS(rs, 47)];
T5D = W[92];
T5F = T5D * T5E;
Tbg = T5D * T5H;
T5G = W[93];
T5I = FMA(T5G, T5H, T5F);
Tbh = FNMS(T5G, T5E, Tbg);
}
{
E T5r, T5u, T5s, Tam, T5q, T5t;
T5r = ri[WS(rs, 31)];
T5u = ii[WS(rs, 31)];
T5q = W[60];
T5s = T5q * T5r;
Tam = T5q * T5u;
T5t = W[61];
T5v = FMA(T5t, T5u, T5s);
Tan = FNMS(T5t, T5r, Tam);
}
{
E T5y, T5B, T5z, Tbe, T5x, T5A;
T5y = ri[WS(rs, 15)];
T5B = ii[WS(rs, 15)];
T5x = W[28];
T5z = T5x * T5y;
Tbe = T5x * T5B;
T5A = W[29];
T5C = FMA(T5A, T5B, T5z);
Tbf = FNMS(T5A, T5y, Tbe);
}
{
E T5w, T5J, TfS, TfT;
T5w = T5p + T5v;
T5J = T5C + T5I;
T5K = T5w + T5J;
Tg9 = T5w - T5J;
TfS = Tal + Tan;
TfT = Tbf + Tbh;
TfU = TfS - TfT;
ThS = TfS + TfT;
}
{
E Tao, Tap, Tbd, Tbi;
Tao = Tal - Tan;
Tap = T5C - T5I;
Taq = Tao + Tap;
Tdm = Tao - Tap;
Tbd = T5p - T5v;
Tbi = Tbf - Tbh;
Tbj = Tbd - Tbi;
Tdx = Tbd + Tbi;
}
}
{
E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o;
{
E To, Tr, Tp, T7f, Tn, Tq;
To = ri[WS(rs, 8)];
Tr = ii[WS(rs, 8)];
Tn = W[14];
Tp = Tn * To;
T7f = Tn * Tr;
Tq = W[15];
Ts = FMA(Tq, Tr, Tp);
T7g = FNMS(Tq, To, T7f);
}
{
E TH, TK, TI, T7p, TG, TJ;
TH = ri[WS(rs, 24)];
TK = ii[WS(rs, 24)];
TG = W[46];
TI = TG * TH;
T7p = TG * TK;
TJ = W[47];
TL = FMA(TJ, TK, TI);
T7q = FNMS(TJ, TH, T7p);
}
{
E Tu, Tx, Tv, T7h, Tt, Tw;
Tu = ri[WS(rs, 40)];
Tx = ii[WS(rs, 40)];
Tt = W[78];
Tv = Tt * Tu;
T7h = Tt * Tx;
Tw = W[79];
Ty = FMA(Tw, Tx, Tv);
T7i = FNMS(Tw, Tu, T7h);
}
{
E TB, TE, TC, T7n, TA, TD;
TB = ri[WS(rs, 56)];
TE = ii[WS(rs, 56)];
TA = W[110];
TC = TA * TB;
T7n = TA * TE;
TD = W[111];
TF = FMA(TD, TE, TC);
T7o = FNMS(TD, TB, T7n);
}
{
E Tz, TM, TeN, TeO;
Tz = Ts + Ty;
TM = TF + TL;
TN = Tz + TM;
Tjl = TM - Tz;
TeN = T7g + T7i;
TeO = T7o + T7q;
TeP = TeN - TeO;
TiP = TeN + TeO;
}
{
E T7j, T7k, T7m, T7r;
T7j = T7g - T7i;
T7k = Ts - Ty;
T7l = T7j - T7k;
TcB = T7k + T7j;
T7m = TF - TL;
T7r = T7o - T7q;
T7s = T7m + T7r;
TcC = T7m - T7r;
}
}
{
E TU, T7w, T1d, T7G, T10, T7y, T17, T7E;
{
E TQ, TT, TR, T7v, TP, TS;
TQ = ri[WS(rs, 4)];
TT = ii[WS(rs, 4)];
TP = W[6];
TR = TP * TQ;
T7v = TP * TT;
TS = W[7];
TU = FMA(TS, TT, TR);
T7w = FNMS(TS, TQ, T7v);
}
{
E T19, T1c, T1a, T7F, T18, T1b;
T19 = ri[WS(rs, 52)];
T1c = ii[WS(rs, 52)];
T18 = W[102];
T1a = T18 * T19;
T7F = T18 * T1c;
T1b = W[103];
T1d = FMA(T1b, T1c, T1a);
T7G = FNMS(T1b, T19, T7F);
}
{
E TW, TZ, TX, T7x, TV, TY;
TW = ri[WS(rs, 36)];
TZ = ii[WS(rs, 36)];
TV = W[70];
TX = TV * TW;
T7x = TV * TZ;
TY = W[71];
T10 = FMA(TY, TZ, TX);
T7y = FNMS(TY, TW, T7x);
}
{
E T13, T16, T14, T7D, T12, T15;
T13 = ri[WS(rs, 20)];
T16 = ii[WS(rs, 20)];
T12 = W[38];
T14 = T12 * T13;
T7D = T12 * T16;
T15 = W[39];
T17 = FMA(T15, T16, T14);
T7E = FNMS(T15, T13, T7D);
}
{
E T11, T1e, TeS, TeT;
T11 = TU + T10;
T1e = T17 + T1d;
T1f = T11 + T1e;
TeR = T11 - T1e;
TeS = T7w + T7y;
TeT = T7E + T7G;
TeU = TeS - TeT;
Thr = TeS + TeT;
}
{
E T7z, T7A, T7C, T7H;
T7z = T7w - T7y;
T7A = T17 - T1d;
T7B = T7z + T7A;
TcG = T7z - T7A;
T7C = TU - T10;
T7H = T7E - T7G;
T7I = T7C - T7H;
TcF = T7C + T7H;
}
}
{
E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z;
{
E T2D, T2G, T2E, T8A, T2C, T2F;
T2D = ri[WS(rs, 62)];
T2G = ii[WS(rs, 62)];
T2C = W[122];
T2E = T2C * T2D;
T8A = T2C * T2G;
T2F = W[123];
T2H = FMA(T2F, T2G, T2E);
T8B = FNMS(T2F, T2D, T8A);
}
{
E T2W, T2Z, T2X, T90, T2V, T2Y;
T2W = ri[WS(rs, 46)];
T2Z = ii[WS(rs, 46)];
T2V = W[90];
T2X = T2V * T2W;
T90 = T2V * T2Z;
T2Y = W[91];
T30 = FMA(T2Y, T2Z, T2X);
T91 = FNMS(T2Y, T2W, T90);
}
{
E T2J, T2M, T2K, T8C, T2I, T2L;
T2J = ri[WS(rs, 30)];
T2M = ii[WS(rs, 30)];
T2I = W[58];
T2K = T2I * T2J;
T8C = T2I * T2M;
T2L = W[59];
T2N = FMA(T2L, T2M, T2K);
T8D = FNMS(T2L, T2J, T8C);
}
{
E T2Q, T2T, T2R, T8Y, T2P, T2S;
T2Q = ri[WS(rs, 14)];
T2T = ii[WS(rs, 14)];
T2P = W[26];
T2R = T2P * T2Q;
T8Y = T2P * T2T;
T2S = W[27];
T2U = FMA(T2S, T2T, T2R);
T8Z = FNMS(T2S, T2Q, T8Y);
}
{
E T2O, T31, Tfe, Tff;
T2O = T2H + T2N;
T31 = T2U + T30;
T32 = T2O + T31;
Tfj = T2O - T31;
Tfe = T8B + T8D;
Tff = T8Z + T91;
Tfg = Tfe - Tff;
ThB = Tfe + Tff;
}
{
E T8E, T8F, T8X, T92;
T8E = T8B - T8D;
T8F = T2U - T30;
T8G = T8E + T8F;
TcU = T8E - T8F;
T8X = T2H - T2N;
T92 = T8Z - T91;
T93 = T8X - T92;
TcX = T8X + T92;
}
}
{
E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6;
{
E T3y, T3B, T3z, T9b, T3x, T3A;
T3y = ri[WS(rs, 1)];
T3B = ii[WS(rs, 1)];
T3x = W[0];
T3z = T3x * T3y;
T9b = T3x * T3B;
T3A = W[1];
T3C = FMA(T3A, T3B, T3z);
T9c = FNMS(T3A, T3y, T9b);
}
{
E T3R, T3U, T3S, Ta7, T3Q, T3T;
T3R = ri[WS(rs, 49)];
T3U = ii[WS(rs, 49)];
T3Q = W[96];
T3S = T3Q * T3R;
Ta7 = T3Q * T3U;
T3T = W[97];
T3V = FMA(T3T, T3U, T3S);
Ta8 = FNMS(T3T, T3R, Ta7);
}
{
E T3E, T3H, T3F, T9d, T3D, T3G;
T3E = ri[WS(rs, 33)];
T3H = ii[WS(rs, 33)];
T3D = W[64];
T3F = T3D * T3E;
T9d = T3D * T3H;
T3G = W[65];
T3I = FMA(T3G, T3H, T3F);
T9e = FNMS(T3G, T3E, T9d);
}
{
E T3L, T3O, T3M, Ta5, T3K, T3N;
T3L = ri[WS(rs, 17)];
T3O = ii[WS(rs, 17)];
T3K = W[32];
T3M = T3K * T3L;
Ta5 = T3K * T3O;
T3N = W[33];
T3P = FMA(T3N, T3O, T3M);
Ta6 = FNMS(T3N, T3L, Ta5);
}
{
E T3J, T3W, Tfr, Tfs;
T3J = T3C + T3I;
T3W = T3P + T3V;
T3X = T3J + T3W;
TfI = T3J - T3W;
Tfr = T9c + T9e;
Tfs = Ta6 + Ta8;
Tft = Tfr - Tfs;
ThH = Tfr + Tfs;
}
{
E T9f, T9g, Ta4, Ta9;
T9f = T9c - T9e;
T9g = T3P - T3V;
T9h = T9f + T9g;
Td3 = T9f - T9g;
Ta4 = T3C - T3I;
Ta9 = Ta6 - Ta8;
Taa = Ta4 - Ta9;
Tde = Ta4 + Ta9;
}
}
{
E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h;
{
E T2b, T2e, T2c, T89, T2a, T2d;
T2b = ri[WS(rs, 10)];
T2e = ii[WS(rs, 10)];
T2a = W[18];
T2c = T2a * T2b;
T89 = T2a * T2e;
T2d = W[19];
T2f = FMA(T2d, T2e, T2c);
T8a = FNMS(T2d, T2b, T89);
}
{
E T2u, T2x, T2v, T8i, T2t, T2w;
T2u = ri[WS(rs, 26)];
T2x = ii[WS(rs, 26)];
T2t = W[50];
T2v = T2t * T2u;
T8i = T2t * T2x;
T2w = W[51];
T2y = FMA(T2w, T2x, T2v);
T8j = FNMS(T2w, T2u, T8i);
}
{
E T2h, T2k, T2i, T8b, T2g, T2j;
T2h = ri[WS(rs, 42)];
T2k = ii[WS(rs, 42)];
T2g = W[82];
T2i = T2g * T2h;
T8b = T2g * T2k;
T2j = W[83];
T2l = FMA(T2j, T2k, T2i);
T8c = FNMS(T2j, T2h, T8b);
}
{
E T2o, T2r, T2p, T8g, T2n, T2q;
T2o = ri[WS(rs, 58)];
T2r = ii[WS(rs, 58)];
T2n = W[114];
T2p = T2n * T2o;
T8g = T2n * T2r;
T2q = W[115];
T2s = FMA(T2q, T2r, T2p);
T8h = FNMS(T2q, T2o, T8g);
}
{
E T2m, T2z, Tf9, Tfa;
T2m = T2f + T2l;
T2z = T2s + T2y;
T2A = T2m + T2z;
Tf6 = T2z - T2m;
Tf9 = T8a + T8c;
Tfa = T8h + T8j;
Tfb = Tf9 - Tfa;
Thw = Tf9 + Tfa;
{
E T8e, T8w, T8l, T8v;
{
E T88, T8d, T8f, T8k;
T88 = T2f - T2l;
T8d = T8a - T8c;
T8e = T88 + T8d;
T8w = T8d - T88;
T8f = T2s - T2y;
T8k = T8h - T8j;
T8l = T8f - T8k;
T8v = T8f + T8k;
}
T8m = T8e - T8l;
TcR = T8e + T8l;
T8x = T8v - T8w;
TcO = T8w + T8v;
}
}
}
{
E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q;
{
E T34, T37, T35, T8I, T33, T36;
T34 = ri[WS(rs, 6)];
T37 = ii[WS(rs, 6)];
T33 = W[10];
T35 = T33 * T34;
T8I = T33 * T37;
T36 = W[11];
T38 = FMA(T36, T37, T35);
T8J = FNMS(T36, T34, T8I);
}
{
E T3n, T3q, T3o, T8R, T3m, T3p;
T3n = ri[WS(rs, 22)];
T3q = ii[WS(rs, 22)];
T3m = W[42];
T3o = T3m * T3n;
T8R = T3m * T3q;
T3p = W[43];
T3r = FMA(T3p, T3q, T3o);
T8S = FNMS(T3p, T3n, T8R);
}
{
E T3a, T3d, T3b, T8K, T39, T3c;
T3a = ri[WS(rs, 38)];
T3d = ii[WS(rs, 38)];
T39 = W[74];
T3b = T39 * T3a;
T8K = T39 * T3d;
T3c = W[75];
T3e = FMA(T3c, T3d, T3b);
T8L = FNMS(T3c, T3a, T8K);
}
{
E T3h, T3k, T3i, T8P, T3g, T3j;
T3h = ri[WS(rs, 54)];
T3k = ii[WS(rs, 54)];
T3g = W[106];
T3i = T3g * T3h;
T8P = T3g * T3k;
T3j = W[107];
T3l = FMA(T3j, T3k, T3i);
T8Q = FNMS(T3j, T3h, T8P);
}
{
E T3f, T3s, Tfk, Tfl;
T3f = T38 + T3e;
T3s = T3l + T3r;
T3t = T3f + T3s;
Tfh = T3s - T3f;
Tfk = T8J + T8L;
Tfl = T8Q + T8S;
Tfm = Tfk - Tfl;
ThC = Tfk + Tfl;
{
E T8N, T95, T8U, T94;
{
E T8H, T8M, T8O, T8T;
T8H = T38 - T3e;
T8M = T8J - T8L;
T8N = T8H + T8M;
T95 = T8M - T8H;
T8O = T3l - T3r;
T8T = T8Q - T8S;
T8U = T8O - T8T;
T94 = T8O + T8T;
}
T8V = T8N - T8U;
TcY = T8N + T8U;
T96 = T94 - T95;
TcV = T95 + T94;
}
}
}
{
E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r;
{
E T3Z, T42, T40, T9j, T3Y, T41;
T3Z = ri[WS(rs, 9)];
T42 = ii[WS(rs, 9)];
T3Y = W[16];
T40 = T3Y * T3Z;
T9j = T3Y * T42;
T41 = W[17];
T43 = FMA(T41, T42, T40);
T9k = FNMS(T41, T3Z, T9j);
}
{
E T4i, T4l, T4j, T9s, T4h, T4k;
T4i = ri[WS(rs, 25)];
T4l = ii[WS(rs, 25)];
T4h = W[48];
T4j = T4h * T4i;
T9s = T4h * T4l;
T4k = W[49];
T4m = FMA(T4k, T4l, T4j);
T9t = FNMS(T4k, T4i, T9s);
}
{
E T45, T48, T46, T9l, T44, T47;
T45 = ri[WS(rs, 41)];
T48 = ii[WS(rs, 41)];
T44 = W[80];
T46 = T44 * T45;
T9l = T44 * T48;
T47 = W[81];
T49 = FMA(T47, T48, T46);
T9m = FNMS(T47, T45, T9l);
}
{
E T4c, T4f, T4d, T9q, T4b, T4e;
T4c = ri[WS(rs, 57)];
T4f = ii[WS(rs, 57)];
T4b = W[112];
T4d = T4b * T4c;
T9q = T4b * T4f;
T4e = W[113];
T4g = FMA(T4e, T4f, T4d);
T9r = FNMS(T4e, T4c, T9q);
}
{
E T4a, T4n, TfJ, TfK;
T4a = T43 + T49;
T4n = T4g + T4m;
T4o = T4a + T4n;
Tfu = T4n - T4a;
TfJ = T9k + T9m;
TfK = T9r + T9t;
TfL = TfJ - TfK;
ThI = TfJ + TfK;
{
E T9o, Tac, T9v, Tab;
{
E T9i, T9n, T9p, T9u;
T9i = T43 - T49;
T9n = T9k - T9m;
T9o = T9i + T9n;
Tac = T9n - T9i;
T9p = T4g - T4m;
T9u = T9r - T9t;
T9v = T9p - T9u;
Tab = T9p + T9u;
}
T9w = T9o - T9v;
Tdf = T9o + T9v;
Tad = Tab - Tac;
Td4 = Tac + Tab;
}
}
}
{
E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA;
{
E T5M, T5P, T5N, Tas, T5L, T5O;
T5M = ri[WS(rs, 7)];
T5P = ii[WS(rs, 7)];
T5L = W[12];
T5N = T5L * T5M;
Tas = T5L * T5P;
T5O = W[13];
T5Q = FMA(T5O, T5P, T5N);
Tat = FNMS(T5O, T5M, Tas);
}
{
E T65, T68, T66, TaB, T64, T67;
T65 = ri[WS(rs, 23)];
T68 = ii[WS(rs, 23)];
T64 = W[44];
T66 = T64 * T65;
TaB = T64 * T68;
T67 = W[45];
T69 = FMA(T67, T68, T66);
TaC = FNMS(T67, T65, TaB);
}
{
E T5S, T5V, T5T, Tau, T5R, T5U;
T5S = ri[WS(rs, 39)];
T5V = ii[WS(rs, 39)];
T5R = W[76];
T5T = T5R * T5S;
Tau = T5R * T5V;
T5U = W[77];
T5W = FMA(T5U, T5V, T5T);
Tav = FNMS(T5U, T5S, Tau);
}
{
E T5Z, T62, T60, Taz, T5Y, T61;
T5Z = ri[WS(rs, 55)];
T62 = ii[WS(rs, 55)];
T5Y = W[108];
T60 = T5Y * T5Z;
Taz = T5Y * T62;
T61 = W[109];
T63 = FMA(T61, T62, T60);
TaA = FNMS(T61, T5Z, Taz);
}
{
E T5X, T6a, Tga, Tgb;
T5X = T5Q + T5W;
T6a = T63 + T69;
T6b = T5X + T6a;
TfV = T6a - T5X;
Tga = Tat + Tav;
Tgb = TaA + TaC;
Tgc = Tga - Tgb;
ThT = Tga + Tgb;
{
E Tax, Tbl, TaE, Tbk;
{
E Tar, Taw, Tay, TaD;
Tar = T5Q - T5W;
Taw = Tat - Tav;
Tax = Tar + Taw;
Tbl = Taw - Tar;
Tay = T63 - T69;
TaD = TaA - TaC;
TaE = Tay - TaD;
Tbk = Tay + TaD;
}
TaF = Tax - TaE;
Tdy = Tax + TaE;
Tbm = Tbk - Tbl;
Tdn = Tbl + Tbk;
}
}
}
{
E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P;
{
E T4r, T4u, T4s, T9U, T4q, T4t;
T4r = ri[WS(rs, 5)];
T4u = ii[WS(rs, 5)];
T4q = W[8];
T4s = T4q * T4r;
T9U = T4q * T4u;
T4t = W[9];
T4v = FMA(T4t, T4u, T4s);
T9V = FNMS(T4t, T4r, T9U);
}
{
E T4K, T4N, T4L, T9Q, T4J, T4M;
T4K = ri[WS(rs, 53)];
T4N = ii[WS(rs, 53)];
T4J = W[104];
T4L = T4J * T4K;
T9Q = T4J * T4N;
T4M = W[105];
T4O = FMA(T4M, T4N, T4L);
T9R = FNMS(T4M, T4K, T9Q);
}
{
E T4x, T4A, T4y, T9W, T4w, T4z;
T4x = ri[WS(rs, 37)];
T4A = ii[WS(rs, 37)];
T4w = W[72];
T4y = T4w * T4x;
T9W = T4w * T4A;
T4z = W[73];
T4B = FMA(T4z, T4A, T4y);
T9X = FNMS(T4z, T4x, T9W);
}
{
E T4E, T4H, T4F, T9O, T4D, T4G;
T4E = ri[WS(rs, 21)];
T4H = ii[WS(rs, 21)];
T4D = W[40];
T4F = T4D * T4E;
T9O = T4D * T4H;
T4G = W[41];
T4I = FMA(T4G, T4H, T4F);
T9P = FNMS(T4G, T4E, T9O);
}
{
E T4C, T4P, Tfz, Tfw, Tfx, Tfy;
T4C = T4v + T4B;
T4P = T4I + T4O;
Tfz = T4C - T4P;
Tfw = T9V + T9X;
Tfx = T9P + T9R;
Tfy = Tfw - Tfx;
T4Q = T4C + T4P;
ThN = Tfw + Tfx;
TfA = Tfy - Tfz;
TfN = Tfz + Tfy;
}
{
E T9T, Td7, Ta0, Td6;
{
E T9N, T9S, T9Y, T9Z;
T9N = T4v - T4B;
T9S = T9P - T9R;
T9T = T9N - T9S;
Td7 = T9N + T9S;
T9Y = T9V - T9X;
T9Z = T4I - T4O;
Ta0 = T9Y + T9Z;
Td6 = T9Y - T9Z;
}
Ta1 = FNMS(KP414213562, Ta0, T9T);
Tdh = FMA(KP414213562, Td6, Td7);
Taf = FMA(KP414213562, T9T, Ta0);
Td8 = FNMS(KP414213562, Td7, Td6);
}
}
{
E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A;
{
E T4S, T4V, T4T, T9F, T4R, T4U;
T4S = ri[WS(rs, 61)];
T4V = ii[WS(rs, 61)];
T4R = W[120];
T4T = T4R * T4S;
T9F = T4R * T4V;
T4U = W[121];
T4W = FMA(T4U, T4V, T4T);
T9G = FNMS(T4U, T4S, T9F);
}
{
E T5b, T5e, T5c, T9B, T5a, T5d;
T5b = ri[WS(rs, 45)];
T5e = ii[WS(rs, 45)];
T5a = W[88];
T5c = T5a * T5b;
T9B = T5a * T5e;
T5d = W[89];
T5f = FMA(T5d, T5e, T5c);
T9C = FNMS(T5d, T5b, T9B);
}
{
E T4Y, T51, T4Z, T9H, T4X, T50;
T4Y = ri[WS(rs, 29)];
T51 = ii[WS(rs, 29)];
T4X = W[56];
T4Z = T4X * T4Y;
T9H = T4X * T51;
T50 = W[57];
T52 = FMA(T50, T51, T4Z);
T9I = FNMS(T50, T4Y, T9H);
}
{
E T55, T58, T56, T9z, T54, T57;
T55 = ri[WS(rs, 13)];
T58 = ii[WS(rs, 13)];
T54 = W[24];
T56 = T54 * T55;
T9z = T54 * T58;
T57 = W[25];
T59 = FMA(T57, T58, T56);
T9A = FNMS(T57, T55, T9z);
}
{
E T53, T5g, TfB, TfC, TfD, TfE;
T53 = T4W + T52;
T5g = T59 + T5f;
TfB = T53 - T5g;
TfC = T9G + T9I;
TfD = T9A + T9C;
TfE = TfC - TfD;
T5h = T53 + T5g;
ThO = TfC + TfD;
TfF = TfB + TfE;
TfO = TfB - TfE;
}
{
E T9E, Tda, T9L, Td9;
{
E T9y, T9D, T9J, T9K;
T9y = T4W - T52;
T9D = T9A - T9C;
T9E = T9y - T9D;
Tda = T9y + T9D;
T9J = T9G - T9I;
T9K = T59 - T5f;
T9L = T9J + T9K;
Td9 = T9J - T9K;
}
T9M = FMA(KP414213562, T9L, T9E);
Tdi = FNMS(KP414213562, Td9, Tda);
Tag = FNMS(KP414213562, T9E, T9L);
Tdb = FMA(KP414213562, Tda, Td9);
}
}
{
E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY;
{
E T6e, T6h, T6f, Tb3, T6d, T6g;
T6e = ri[WS(rs, 3)];
T6h = ii[WS(rs, 3)];
T6d = W[4];
T6f = T6d * T6e;
Tb3 = T6d * T6h;
T6g = W[5];
T6i = FMA(T6g, T6h, T6f);
Tb4 = FNMS(T6g, T6e, Tb3);
}
{
E T6x, T6A, T6y, TaZ, T6w, T6z;
T6x = ri[WS(rs, 51)];
T6A = ii[WS(rs, 51)];
T6w = W[100];
T6y = T6w * T6x;
TaZ = T6w * T6A;
T6z = W[101];
T6B = FMA(T6z, T6A, T6y);
Tb0 = FNMS(T6z, T6x, TaZ);
}
{
E T6k, T6n, T6l, Tb5, T6j, T6m;
T6k = ri[WS(rs, 35)];
T6n = ii[WS(rs, 35)];
T6j = W[68];
T6l = T6j * T6k;
Tb5 = T6j * T6n;
T6m = W[69];
T6o = FMA(T6m, T6n, T6l);
Tb6 = FNMS(T6m, T6k, Tb5);
}
{
E T6r, T6u, T6s, TaX, T6q, T6t;
T6r = ri[WS(rs, 19)];
T6u = ii[WS(rs, 19)];
T6q = W[36];
T6s = T6q * T6r;
TaX = T6q * T6u;
T6t = W[37];
T6v = FMA(T6t, T6u, T6s);
TaY = FNMS(T6t, T6r, TaX);
}
{
E T6p, T6C, Tg0, TfX, TfY, TfZ;
T6p = T6i + T6o;
T6C = T6v + T6B;
Tg0 = T6p - T6C;
TfX = Tb4 + Tb6;
TfY = TaY + Tb0;
TfZ = TfX - TfY;
T6D = T6p + T6C;
ThY = TfX + TfY;
Tg1 = TfZ - Tg0;
Tge = Tg0 + TfZ;
}
{
E Tb2, Tdq, Tb9, Tdp;
{
E TaW, Tb1, Tb7, Tb8;
TaW = T6i - T6o;
Tb1 = TaY - Tb0;
Tb2 = TaW - Tb1;
Tdq = TaW + Tb1;
Tb7 = Tb4 - Tb6;
Tb8 = T6v - T6B;
Tb9 = Tb7 + Tb8;
Tdp = Tb7 - Tb8;
}
Tba = FNMS(KP414213562, Tb9, Tb2);
TdA = FMA(KP414213562, Tdp, Tdq);
Tbo = FMA(KP414213562, Tb2, Tb9);
Tdr = FNMS(KP414213562, Tdq, Tdp);
}
}
{
E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ;
{
E T6F, T6I, T6G, TaO, T6E, T6H;
T6F = ri[WS(rs, 59)];
T6I = ii[WS(rs, 59)];
T6E = W[116];
T6G = T6E * T6F;
TaO = T6E * T6I;
T6H = W[117];
T6J = FMA(T6H, T6I, T6G);
TaP = FNMS(T6H, T6F, TaO);
}
{
E T6Y, T71, T6Z, TaK, T6X, T70;
T6Y = ri[WS(rs, 43)];
T71 = ii[WS(rs, 43)];
T6X = W[84];
T6Z = T6X * T6Y;
TaK = T6X * T71;
T70 = W[85];
T72 = FMA(T70, T71, T6Z);
TaL = FNMS(T70, T6Y, TaK);
}
{
E T6L, T6O, T6M, TaQ, T6K, T6N;
T6L = ri[WS(rs, 27)];
T6O = ii[WS(rs, 27)];
T6K = W[52];
T6M = T6K * T6L;
TaQ = T6K * T6O;
T6N = W[53];
T6P = FMA(T6N, T6O, T6M);
TaR = FNMS(T6N, T6L, TaQ);
}
{
E T6S, T6V, T6T, TaI, T6R, T6U;
T6S = ri[WS(rs, 11)];
T6V = ii[WS(rs, 11)];
T6R = W[20];
T6T = T6R * T6S;
TaI = T6R * T6V;
T6U = W[21];
T6W = FMA(T6U, T6V, T6T);
TaJ = FNMS(T6U, T6S, TaI);
}
{
E T6Q, T73, Tg2, Tg3, Tg4, Tg5;
T6Q = T6J + T6P;
T73 = T6W + T72;
Tg2 = T6Q - T73;
Tg3 = TaP + TaR;
Tg4 = TaJ + TaL;
Tg5 = Tg3 - Tg4;
T74 = T6Q + T73;
ThZ = Tg3 + Tg4;
Tg6 = Tg2 + Tg5;
Tgf = Tg2 - Tg5;
}
{
E TaN, Tdt, TaU, Tds;
{
E TaH, TaM, TaS, TaT;
TaH = T6J - T6P;
TaM = TaJ - TaL;
TaN = TaH - TaM;
Tdt = TaH + TaM;
TaS = TaP - TaR;
TaT = T6W - T72;
TaU = TaS + TaT;
Tds = TaS - TaT;
}
TaV = FMA(KP414213562, TaU, TaN);
TdB = FNMS(KP414213562, Tds, Tdt);
Tbp = FNMS(KP414213562, TaN, TaU);
Tdu = FMA(KP414213562, Tdt, Tds);
}
}
{
E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix;
E TiF;
{
E TO, T1H, Tip, Tiq;
TO = Tm + TN;
T1H = T1f + T1G;
T1I = TO + T1H;
Tio = TO - T1H;
{
E T2B, T3u, TiO, TiW;
T2B = T29 + T2A;
T3u = T32 + T3t;
T3v = T2B + T3u;
Tj1 = T3u - T2B;
TiO = Thr + Ths;
TiW = TiP + TiV;
TiX = TiO + TiW;
Tj2 = TiW - TiO;
}
Tip = Thv + Thw;
Tiq = ThB + ThC;
Tir = Tip - Tiq;
TiN = Tip + Tiq;
{
E T6c, T75, Tiy, Tiz, TiA, TiB;
T6c = T5K + T6b;
T75 = T6D + T74;
Tiy = T6c - T75;
Tiz = ThS + ThT;
TiA = ThY + ThZ;
TiB = Tiz - TiA;
T76 = T6c + T75;
TiK = Tiz + TiA;
TiC = Tiy - TiB;
TiG = Tiy + TiB;
}
{
E T4p, T5i, Tit, Tiu, Tiv, Tiw;
T4p = T3X + T4o;
T5i = T4Q + T5h;
Tit = T4p - T5i;
Tiu = ThH + ThI;
Tiv = ThN + ThO;
Tiw = Tiu - Tiv;
T5j = T4p + T5i;
TiJ = Tiu + Tiv;
Tix = Tit + Tiw;
TiF = Tiw - Tit;
}
}
{
E T3w, T77, TiM, TiY;
T3w = T1I + T3v;
T77 = T5j + T76;
ri[WS(rs, 32)] = T3w - T77;
ri[0] = T3w + T77;
TiM = TiJ + TiK;
TiY = TiN + TiX;
ii[0] = TiM + TiY;
ii[WS(rs, 32)] = TiY - TiM;
}
{
E Tis, TiD, Tj3, Tj4;
Tis = Tio + Tir;
TiD = Tix + TiC;
ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
Tj3 = Tj1 + Tj2;
Tj4 = TiF + TiG;
ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
}
{
E TiE, TiH, Tj5, Tj6;
TiE = Tio - Tir;
TiH = TiF - TiG;
ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
Tj5 = Tj2 - Tj1;
Tj6 = TiC - Tix;
ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
}
{
E TiI, TiL, TiZ, Tj0;
TiI = T1I - T3v;
TiL = TiJ - TiK;
ri[WS(rs, 48)] = TiI - TiL;
ri[WS(rs, 16)] = TiI + TiL;
TiZ = T76 - T5j;
Tj0 = TiX - TiN;
ii[WS(rs, 16)] = TiZ + Tj0;
ii[WS(rs, 48)] = Tj0 - TiZ;
}
}
{
E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6;
E Tii;
{
E Thq, Tht, Tj7, Tj8;
Thq = Tm - TN;
Tht = Thr - Ths;
Thu = Thq - Tht;
Ti8 = Thq + Tht;
Tj7 = T1G - T1f;
Tj8 = TiV - TiP;
Tj9 = Tj7 + Tj8;
Tjf = Tj8 - Tj7;
}
{
E Thz, Ti9, ThE, Tia;
{
E Thx, Thy, ThA, ThD;
Thx = Thv - Thw;
Thy = T29 - T2A;
Thz = Thx - Thy;
Ti9 = Thy + Thx;
ThA = T32 - T3t;
ThD = ThB - ThC;
ThE = ThA + ThD;
Tia = ThA - ThD;
}
ThF = Thz - ThE;
Tjg = Tia - Ti9;
Tib = Ti9 + Tia;
Tja = Thz + ThE;
}
{
E ThL, Tie, ThQ, Tid;
{
E ThJ, ThK, ThM, ThP;
ThJ = ThH - ThI;
ThK = T5h - T4Q;
ThL = ThJ - ThK;
Tie = ThJ + ThK;
ThM = T3X - T4o;
ThP = ThN - ThO;
ThQ = ThM - ThP;
Tid = ThM + ThP;
}
ThR = FMA(KP414213562, ThQ, ThL);
Til = FNMS(KP414213562, Tid, Tie);
Ti5 = FNMS(KP414213562, ThL, ThQ);
Tif = FMA(KP414213562, Tie, Tid);
}
{
E ThW, Tih, Ti1, Tig;
{
E ThU, ThV, ThX, Ti0;
ThU = ThS - ThT;
ThV = T74 - T6D;
ThW = ThU - ThV;
Tih = ThU + ThV;
ThX = T5K - T6b;
Ti0 = ThY - ThZ;
Ti1 = ThX - Ti0;
Tig = ThX + Ti0;
}
Ti2 = FNMS(KP414213562, Ti1, ThW);
Tim = FMA(KP414213562, Tig, Tih);
Ti6 = FMA(KP414213562, ThW, Ti1);
Tii = FNMS(KP414213562, Tih, Tig);
}
{
E ThG, Ti3, Tjh, Tji;
ThG = FMA(KP707106781, ThF, Thu);
Ti3 = ThR - Ti2;
ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
Tjh = FMA(KP707106781, Tjg, Tjf);
Tji = Ti6 - Ti5;
ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
}
{
E Ti4, Ti7, Tjj, Tjk;
Ti4 = FNMS(KP707106781, ThF, Thu);
Ti7 = Ti5 + Ti6;
ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
Tjj = FNMS(KP707106781, Tjg, Tjf);
Tjk = ThR + Ti2;
ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
}
{
E Tic, Tij, Tjb, Tjc;
Tic = FMA(KP707106781, Tib, Ti8);
Tij = Tif + Tii;
ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
Tjb = FMA(KP707106781, Tja, Tj9);
Tjc = Til + Tim;
ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
}
{
E Tik, Tin, Tjd, Tje;
Tik = FNMS(KP707106781, Tib, Ti8);
Tin = Til - Tim;
ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
Tjd = FNMS(KP707106781, Tja, Tj9);
Tje = Tii - Tif;
ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
}
}
{
E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8;
E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC;
E Tgm, Tgy;
{
E TeQ, TjB, Tf1, TjC, TeV, Tf0;
TeQ = TeM + TeP;
TjB = Tjm - Tjl;
TeV = TeR + TeU;
Tf0 = TeW - TeZ;
Tf1 = TeV + Tf0;
TjC = Tf0 - TeV;
Tf2 = FNMS(KP707106781, Tf1, TeQ);
TjJ = FNMS(KP707106781, TjC, TjB);
Tgo = FMA(KP707106781, Tf1, TeQ);
TjD = FMA(KP707106781, TjC, TjB);
}
{
E TgE, Tjn, TgH, Tjo, TgF, TgG;
TgE = TeM - TeP;
Tjn = Tjl + Tjm;
TgF = TeU - TeR;
TgG = TeW + TeZ;
TgH = TgF - TgG;
Tjo = TgF + TgG;
TgI = FMA(KP707106781, TgH, TgE);
Tjv = FNMS(KP707106781, Tjo, Tjn);
Tha = FNMS(KP707106781, TgH, TgE);
Tjp = FMA(KP707106781, Tjo, Tjn);
}
{
E Tfd, Tgp, Tfo, Tgq;
{
E Tf7, Tfc, Tfi, Tfn;
Tf7 = Tf5 + Tf6;
Tfc = Tf8 + Tfb;
Tfd = FNMS(KP414213562, Tfc, Tf7);
Tgp = FMA(KP414213562, Tf7, Tfc);
Tfi = Tfg + Tfh;
Tfn = Tfj + Tfm;
Tfo = FMA(KP414213562, Tfn, Tfi);
Tgq = FNMS(KP414213562, Tfi, Tfn);
}
Tfp = Tfd - Tfo;
Tjw = Tgq - Tgp;
Tgr = Tgp + Tgq;
Tjq = Tfd + Tfo;
}
{
E Th0, Thj, Th3, Thi;
{
E TgY, TgZ, Th1, Th2;
TgY = Tg9 - Tgc;
TgZ = Tg6 - Tg1;
Th0 = FNMS(KP707106781, TgZ, TgY);
Thj = FMA(KP707106781, TgZ, TgY);
Th1 = TfU - TfV;
Th2 = Tge - Tgf;
Th3 = FNMS(KP707106781, Th2, Th1);
Thi = FMA(KP707106781, Th2, Th1);
}
Th4 = FNMS(KP668178637, Th3, Th0);
Tho = FMA(KP198912367, Thi, Thj);
Th8 = FMA(KP668178637, Th0, Th3);
Thk = FNMS(KP198912367, Thj, Thi);
}
{
E TfH, Tgu, TfQ, Tgt;
{
E Tfv, TfG, TfM, TfP;
Tfv = Tft + Tfu;
TfG = TfA + TfF;
TfH = FNMS(KP707106781, TfG, Tfv);
Tgu = FMA(KP707106781, TfG, Tfv);
TfM = TfI + TfL;
TfP = TfN + TfO;
TfQ = FNMS(KP707106781, TfP, TfM);
Tgt = FMA(KP707106781, TfP, TfM);
}
TfR = FMA(KP668178637, TfQ, TfH);
TgB = FNMS(KP198912367, Tgt, Tgu);
Tgl = FNMS(KP668178637, TfH, TfQ);
Tgv = FMA(KP198912367, Tgu, Tgt);
}
{
E TgL, Thb, TgO, Thc;
{
E TgJ, TgK, TgM, TgN;
TgJ = Tf5 - Tf6;
TgK = Tf8 - Tfb;
TgL = FMA(KP414213562, TgK, TgJ);
Thb = FNMS(KP414213562, TgJ, TgK);
TgM = Tfg - Tfh;
TgN = Tfj - Tfm;
TgO = FNMS(KP414213562, TgN, TgM);
Thc = FMA(KP414213562, TgM, TgN);
}
TgP = TgL - TgO;
TjK = TgL + TgO;
Thd = Thb + Thc;
TjE = Thc - Thb;
}
{
E TgT, Thg, TgW, Thf;
{
E TgR, TgS, TgU, TgV;
TgR = TfI - TfL;
TgS = TfF - TfA;
TgT = FNMS(KP707106781, TgS, TgR);
Thg = FMA(KP707106781, TgS, TgR);
TgU = Tft - Tfu;
TgV = TfN - TfO;
TgW = FNMS(KP707106781, TgV, TgU);
Thf = FMA(KP707106781, TgV, TgU);
}
TgX = FMA(KP668178637, TgW, TgT);
Thn = FNMS(KP198912367, Thf, Thg);
Th7 = FNMS(KP668178637, TgT, TgW);
Thh = FMA(KP198912367, Thg, Thf);
}
{
E Tg8, Tgx, Tgh, Tgw;
{
E TfW, Tg7, Tgd, Tgg;
TfW = TfU + TfV;
Tg7 = Tg1 + Tg6;
Tg8 = FNMS(KP707106781, Tg7, TfW);
Tgx = FMA(KP707106781, Tg7, TfW);
Tgd = Tg9 + Tgc;
Tgg = Tge + Tgf;
Tgh = FNMS(KP707106781, Tgg, Tgd);
Tgw = FMA(KP707106781, Tgg, Tgd);
}
Tgi = FNMS(KP668178637, Tgh, Tg8);
TgC = FMA(KP198912367, Tgw, Tgx);
Tgm = FMA(KP668178637, Tg8, Tgh);
Tgy = FNMS(KP198912367, Tgx, Tgw);
}
{
E Tfq, Tgj, Tjx, Tjy;
Tfq = FMA(KP923879532, Tfp, Tf2);
Tgj = TfR - Tgi;
ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
Tjx = FMA(KP923879532, Tjw, Tjv);
Tjy = Tgm - Tgl;
ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
}
{
E Tgk, Tgn, Tjz, TjA;
Tgk = FNMS(KP923879532, Tfp, Tf2);
Tgn = Tgl + Tgm;
ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
Tjz = FNMS(KP923879532, Tjw, Tjv);
TjA = TfR + Tgi;
ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
}
{
E Tgs, Tgz, Tjr, Tjs;
Tgs = FMA(KP923879532, Tgr, Tgo);
Tgz = Tgv + Tgy;
ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
Tjr = FMA(KP923879532, Tjq, Tjp);
Tjs = TgB + TgC;
ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
}
{
E TgA, TgD, Tjt, Tju;
TgA = FNMS(KP923879532, Tgr, Tgo);
TgD = TgB - TgC;
ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
Tjt = FNMS(KP923879532, Tjq, Tjp);
Tju = Tgy - Tgv;
ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
}
{
E TgQ, Th5, TjF, TjG;
TgQ = FMA(KP923879532, TgP, TgI);
Th5 = TgX + Th4;
ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
TjF = FMA(KP923879532, TjE, TjD);
TjG = Th7 + Th8;
ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
}
{
E Th6, Th9, TjH, TjI;
Th6 = FNMS(KP923879532, TgP, TgI);
Th9 = Th7 - Th8;
ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
TjH = FNMS(KP923879532, TjE, TjD);
TjI = Th4 - TgX;
ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
}
{
E The, Thl, TjL, TjM;
The = FNMS(KP923879532, Thd, Tha);
Thl = Thh - Thk;
ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
TjL = FNMS(KP923879532, TjK, TjJ);
TjM = Tho - Thn;
ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
}
{
E Thm, Thp, TjN, TjO;
Thm = FMA(KP923879532, Thd, Tha);
Thp = Thn + Tho;
ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
TjN = FMA(KP923879532, TjK, TjJ);
TjO = Thh + Thk;
ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
}
}
{
E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch;
E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp;
E Tkv, Tck;
{
E T8z, Tbz, T98, TbA;
{
E T8n, T8y, T8W, T97;
T8n = FNMS(KP707106781, T8m, T87);
T8y = FNMS(KP707106781, T8x, T8u);
T8z = FNMS(KP668178637, T8y, T8n);
Tbz = FMA(KP668178637, T8n, T8y);
T8W = FNMS(KP707106781, T8V, T8G);
T97 = FNMS(KP707106781, T96, T93);
T98 = FMA(KP668178637, T97, T8W);
TbA = FNMS(KP668178637, T8W, T97);
}
T99 = T8z - T98;
Tkw = TbA - Tbz;
TbB = Tbz + TbA;
Tkq = T8z + T98;
}
{
E Ta3, TbE, Tai, TbD;
{
E T9x, Ta2, Tae, Tah;
T9x = FNMS(KP707106781, T9w, T9h);
Ta2 = T9M - Ta1;
Ta3 = FNMS(KP923879532, Ta2, T9x);
TbE = FMA(KP923879532, Ta2, T9x);
Tae = FNMS(KP707106781, Tad, Taa);
Tah = Taf - Tag;
Tai = FNMS(KP923879532, Tah, Tae);
TbD = FMA(KP923879532, Tah, Tae);
}
Taj = FMA(KP534511135, Tai, Ta3);
TbL = FNMS(KP303346683, TbD, TbE);
Tbv = FNMS(KP534511135, Ta3, Tai);
TbF = FMA(KP303346683, TbE, TbD);
}
{
E Tca, Tct, Tcd, Tcs;
{
E Tc8, Tc9, Tcb, Tcc;
Tc8 = FMA(KP707106781, Tbm, Tbj);
Tc9 = Tba + TaV;
Tca = FNMS(KP923879532, Tc9, Tc8);
Tct = FMA(KP923879532, Tc9, Tc8);
Tcb = FMA(KP707106781, TaF, Taq);
Tcc = Tbo + Tbp;
Tcd = FNMS(KP923879532, Tcc, Tcb);
Tcs = FMA(KP923879532, Tcc, Tcb);
}
Tce = FNMS(KP820678790, Tcd, Tca);
Tcy = FMA(KP098491403, Tcs, Tct);
Tci = FMA(KP820678790, Tca, Tcd);
Tcu = FNMS(KP098491403, Tct, Tcs);
}
{
E Tc3, Tcq, Tc6, Tcp;
{
E Tc1, Tc2, Tc4, Tc5;
Tc1 = FMA(KP707106781, Tad, Taa);
Tc2 = Ta1 + T9M;
Tc3 = FNMS(KP923879532, Tc2, Tc1);
Tcq = FMA(KP923879532, Tc2, Tc1);
Tc4 = FMA(KP707106781, T9w, T9h);
Tc5 = Taf + Tag;
Tc6 = FNMS(KP923879532, Tc5, Tc4);
Tcp = FMA(KP923879532, Tc5, Tc4);
}
Tc7 = FMA(KP820678790, Tc6, Tc3);
Tcx = FNMS(KP098491403, Tcp, Tcq);
Tch = FNMS(KP820678790, Tc3, Tc6);
Tcr = FMA(KP098491403, Tcq, Tcp);
}
{
E TbV, Tcl, TbY, Tcm;
{
E TbT, TbU, TbW, TbX;
TbT = FMA(KP707106781, T8m, T87);
TbU = FMA(KP707106781, T8x, T8u);
TbV = FMA(KP198912367, TbU, TbT);
Tcl = FNMS(KP198912367, TbT, TbU);
TbW = FMA(KP707106781, T8V, T8G);
TbX = FMA(KP707106781, T96, T93);
TbY = FNMS(KP198912367, TbX, TbW);
Tcm = FMA(KP198912367, TbW, TbX);
}
TbZ = TbV - TbY;
TkK = TbV + TbY;
Tcn = Tcl + Tcm;
TkE = Tcm - Tcl;
}
{
E Tbc, TbH, Tbr, TbG;
{
E TaG, Tbb, Tbn, Tbq;
TaG = FNMS(KP707106781, TaF, Taq);
Tbb = TaV - Tba;
Tbc = FNMS(KP923879532, Tbb, TaG);
TbH = FMA(KP923879532, Tbb, TaG);
Tbn = FNMS(KP707106781, Tbm, Tbj);
Tbq = Tbo - Tbp;
Tbr = FNMS(KP923879532, Tbq, Tbn);
TbG = FMA(KP923879532, Tbq, Tbn);
}
Tbs = FNMS(KP534511135, Tbr, Tbc);
TbM = FMA(KP303346683, TbG, TbH);
Tbw = FMA(KP534511135, Tbc, Tbr);
TbI = FNMS(KP303346683, TbH, TbG);
}
{
E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm;
T7t = T7l - T7s;
T7u = FMA(KP707106781, T7t, T7e);
TbO = FNMS(KP707106781, T7t, T7e);
Tkm = TcC - TcB;
Tkn = FMA(KP707106781, Tkm, Tkl);
TkB = FNMS(KP707106781, Tkm, Tkl);
{
E T7J, T7Y, TbP, TbQ;
T7J = FMA(KP414213562, T7I, T7B);
T7Y = FNMS(KP414213562, T7X, T7Q);
T7Z = T7J - T7Y;
TkC = T7J + T7Y;
TbP = FNMS(KP414213562, T7B, T7I);
TbQ = FMA(KP414213562, T7Q, T7X);
TbR = TbP + TbQ;
Tko = TbQ - TbP;
}
T80 = FNMS(KP923879532, T7Z, T7u);
TkD = FNMS(KP923879532, TkC, TkB);
TkJ = FMA(KP923879532, TkC, TkB);
Tby = FMA(KP923879532, T7Z, T7u);
TbS = FNMS(KP923879532, TbR, TbO);
Tkp = FMA(KP923879532, Tko, Tkn);
Tkv = FNMS(KP923879532, Tko, Tkn);
Tck = FMA(KP923879532, TbR, TbO);
}
{
E T9a, Tbt, Tkx, Tky;
T9a = FMA(KP831469612, T99, T80);
Tbt = Taj - Tbs;
ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
Tkx = FMA(KP831469612, Tkw, Tkv);
Tky = Tbw - Tbv;
ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
}
{
E Tbu, Tbx, Tkz, TkA;
Tbu = FNMS(KP831469612, T99, T80);
Tbx = Tbv + Tbw;
ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
Tkz = FNMS(KP831469612, Tkw, Tkv);
TkA = Taj + Tbs;
ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
}
{
E TbC, TbJ, Tkr, Tks;
TbC = FMA(KP831469612, TbB, Tby);
TbJ = TbF + TbI;
ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
Tkr = FMA(KP831469612, Tkq, Tkp);
Tks = TbL + TbM;
ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
}
{
E TbK, TbN, Tkt, Tku;
TbK = FNMS(KP831469612, TbB, Tby);
TbN = TbL - TbM;
ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
Tkt = FNMS(KP831469612, Tkq, Tkp);
Tku = TbI - TbF;
ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
}
{
E Tc0, Tcf, TkF, TkG;
Tc0 = FMA(KP980785280, TbZ, TbS);
Tcf = Tc7 + Tce;
ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
TkF = FMA(KP980785280, TkE, TkD);
TkG = Tch + Tci;
ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
}
{
E Tcg, Tcj, TkH, TkI;
Tcg = FNMS(KP980785280, TbZ, TbS);
Tcj = Tch - Tci;
ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
TkH = FNMS(KP980785280, TkE, TkD);
TkI = Tce - Tc7;
ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
}
{
E Tco, Tcv, TkL, TkM;
Tco = FNMS(KP980785280, Tcn, Tck);
Tcv = Tcr - Tcu;
ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
TkL = FNMS(KP980785280, TkK, TkJ);
TkM = Tcy - Tcx;
ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
}
{
E Tcw, Tcz, TkN, TkO;
Tcw = FMA(KP980785280, Tcn, Tck);
Tcz = Tcx + Tcy;
ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
TkN = FMA(KP980785280, TkK, TkJ);
TkO = Tcr + Tcu;
ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
}
}
{
E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet;
E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV;
E Tk1, Tew;
{
E TcT, TdL, Td0, TdM;
{
E TcP, TcS, TcW, TcZ;
TcP = FMA(KP707106781, TcO, TcN);
TcS = FMA(KP707106781, TcR, TcQ);
TcT = FNMS(KP198912367, TcS, TcP);
TdL = FMA(KP198912367, TcP, TcS);
TcW = FMA(KP707106781, TcV, TcU);
TcZ = FMA(KP707106781, TcY, TcX);
Td0 = FMA(KP198912367, TcZ, TcW);
TdM = FNMS(KP198912367, TcW, TcZ);
}
Td1 = TcT - Td0;
Tk2 = TdM - TdL;
TdN = TdL + TdM;
TjW = TcT + Td0;
}
{
E Tdd, TdQ, Tdk, TdP;
{
E Td5, Tdc, Tdg, Tdj;
Td5 = FMA(KP707106781, Td4, Td3);
Tdc = Td8 + Tdb;
Tdd = FNMS(KP923879532, Tdc, Td5);
TdQ = FMA(KP923879532, Tdc, Td5);
Tdg = FMA(KP707106781, Tdf, Tde);
Tdj = Tdh + Tdi;
Tdk = FNMS(KP923879532, Tdj, Tdg);
TdP = FMA(KP923879532, Tdj, Tdg);
}
Tdl = FMA(KP820678790, Tdk, Tdd);
TdX = FNMS(KP098491403, TdP, TdQ);
TdH = FNMS(KP820678790, Tdd, Tdk);
TdR = FMA(KP098491403, TdQ, TdP);
}
{
E Tem, TeF, Tep, TeE;
{
E Tek, Tel, Ten, Teo;
Tek = FNMS(KP707106781, Tdy, Tdx);
Tel = Tdu - Tdr;
Tem = FNMS(KP923879532, Tel, Tek);
TeF = FMA(KP923879532, Tel, Tek);
Ten = FNMS(KP707106781, Tdn, Tdm);
Teo = TdA - TdB;
Tep = FNMS(KP923879532, Teo, Ten);
TeE = FMA(KP923879532, Teo, Ten);
}
Teq = FNMS(KP534511135, Tep, Tem);
TeK = FMA(KP303346683, TeE, TeF);
Teu = FMA(KP534511135, Tem, Tep);
TeG = FNMS(KP303346683, TeF, TeE);
}
{
E Tef, TeC, Tei, TeB;
{
E Ted, Tee, Teg, Teh;
Ted = FNMS(KP707106781, Tdf, Tde);
Tee = Tdb - Td8;
Tef = FNMS(KP923879532, Tee, Ted);
TeC = FMA(KP923879532, Tee, Ted);
Teg = FNMS(KP707106781, Td4, Td3);
Teh = Tdh - Tdi;
Tei = FNMS(KP923879532, Teh, Teg);
TeB = FMA(KP923879532, Teh, Teg);
}
Tej = FMA(KP534511135, Tei, Tef);
TeJ = FNMS(KP303346683, TeB, TeC);
Tet = FNMS(KP534511135, Tef, Tei);
TeD = FMA(KP303346683, TeC, TeB);
}
{
E Te7, Tex, Tea, Tey;
{
E Te5, Te6, Te8, Te9;
Te5 = FNMS(KP707106781, TcO, TcN);
Te6 = FNMS(KP707106781, TcR, TcQ);
Te7 = FMA(KP668178637, Te6, Te5);
Tex = FNMS(KP668178637, Te5, Te6);
Te8 = FNMS(KP707106781, TcV, TcU);
Te9 = FNMS(KP707106781, TcY, TcX);
Tea = FNMS(KP668178637, Te9, Te8);
Tey = FMA(KP668178637, Te8, Te9);
}
Teb = Te7 - Tea;
Tkg = Te7 + Tea;
Tez = Tex + Tey;
Tka = Tey - Tex;
}
{
E Tdw, TdT, TdD, TdS;
{
E Tdo, Tdv, Tdz, TdC;
Tdo = FMA(KP707106781, Tdn, Tdm);
Tdv = Tdr + Tdu;
Tdw = FNMS(KP923879532, Tdv, Tdo);
TdT = FMA(KP923879532, Tdv, Tdo);
Tdz = FMA(KP707106781, Tdy, Tdx);
TdC = TdA + TdB;
TdD = FNMS(KP923879532, TdC, Tdz);
TdS = FMA(KP923879532, TdC, Tdz);
}
TdE = FNMS(KP820678790, TdD, Tdw);
TdY = FMA(KP098491403, TdS, TdT);
TdI = FMA(KP820678790, Tdw, TdD);
TdU = FNMS(KP098491403, TdT, TdS);
}
{
E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS;
TcD = TcB + TcC;
TcE = FMA(KP707106781, TcD, TcA);
Te0 = FNMS(KP707106781, TcD, TcA);
TjS = T7l + T7s;
TjT = FMA(KP707106781, TjS, TjR);
Tk7 = FNMS(KP707106781, TjS, TjR);
{
E TcH, TcK, Te1, Te2;
TcH = FMA(KP414213562, TcG, TcF);
TcK = FNMS(KP414213562, TcJ, TcI);
TcL = TcH + TcK;
Tk8 = TcK - TcH;
Te1 = FNMS(KP414213562, TcF, TcG);
Te2 = FMA(KP414213562, TcI, TcJ);
Te3 = Te1 - Te2;
TjU = Te1 + Te2;
}
TcM = FNMS(KP923879532, TcL, TcE);
Tk9 = FMA(KP923879532, Tk8, Tk7);
Tkf = FNMS(KP923879532, Tk8, Tk7);
TdK = FMA(KP923879532, TcL, TcE);
Te4 = FMA(KP923879532, Te3, Te0);
TjV = FMA(KP923879532, TjU, TjT);
Tk1 = FNMS(KP923879532, TjU, TjT);
Tew = FNMS(KP923879532, Te3, Te0);
}
{
E Td2, TdF, Tk3, Tk4;
Td2 = FMA(KP980785280, Td1, TcM);
TdF = Tdl - TdE;
ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
Tk3 = FMA(KP980785280, Tk2, Tk1);
Tk4 = TdI - TdH;
ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
}
{
E TdG, TdJ, Tk5, Tk6;
TdG = FNMS(KP980785280, Td1, TcM);
TdJ = TdH + TdI;
ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
Tk5 = FNMS(KP980785280, Tk2, Tk1);
Tk6 = Tdl + TdE;
ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
}
{
E TdO, TdV, TjX, TjY;
TdO = FMA(KP980785280, TdN, TdK);
TdV = TdR + TdU;
ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
TjX = FMA(KP980785280, TjW, TjV);
TjY = TdX + TdY;
ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
}
{
E TdW, TdZ, TjZ, Tk0;
TdW = FNMS(KP980785280, TdN, TdK);
TdZ = TdX - TdY;
ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
TjZ = FNMS(KP980785280, TjW, TjV);
Tk0 = TdU - TdR;
ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
}
{
E Tec, Ter, Tkb, Tkc;
Tec = FMA(KP831469612, Teb, Te4);
Ter = Tej + Teq;
ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
Tkb = FMA(KP831469612, Tka, Tk9);
Tkc = Tet + Teu;
ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
}
{
E Tes, Tev, Tkd, Tke;
Tes = FNMS(KP831469612, Teb, Te4);
Tev = Tet - Teu;
ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
Tkd = FNMS(KP831469612, Tka, Tk9);
Tke = Teq - Tej;
ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
}
{
E TeA, TeH, Tkh, Tki;
TeA = FNMS(KP831469612, Tez, Tew);
TeH = TeD - TeG;
ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
Tkh = FNMS(KP831469612, Tkg, Tkf);
Tki = TeK - TeJ;
ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
}
{
E TeI, TeL, Tkj, Tkk;
TeI = FMA(KP831469612, Tez, Tew);
TeL = TeJ + TeK;
ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
Tkj = FMA(KP831469612, Tkg, Tkf);
Tkk = TeD + TeG;
ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 64 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 520, 126, 518, 0 }, 0, 0, 0 };
void X(codelet_t1_64) (planner *p) {
X(kdft_dit_register) (p, t1_64, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
/*
* This function contains 1038 FP additions, 500 FP multiplications,
* (or, 808 additions, 270 multiplications, 230 fused multiply/add),
* 176 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
{
E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
T1 = ri[0];
TgR = ii[0];
{
E T3, T5, T2, T4;
T3 = ri[WS(rs, 32)];
T5 = ii[WS(rs, 32)];
T2 = W[62];
T4 = W[63];
T6 = FMA(T2, T3, T4 * T5);
TgQ = FNMS(T4, T3, T2 * T5);
}
{
E T9, Tb, T8, Ta;
T9 = ri[WS(rs, 16)];
Tb = ii[WS(rs, 16)];
T8 = W[30];
Ta = W[31];
Tc = FMA(T8, T9, Ta * Tb);
T68 = FNMS(Ta, T9, T8 * Tb);
}
{
E Te, Tg, Td, Tf;
Te = ri[WS(rs, 48)];
Tg = ii[WS(rs, 48)];
Td = W[94];
Tf = W[95];
Th = FMA(Td, Te, Tf * Tg);
T69 = FNMS(Tf, Te, Td * Tg);
}
{
E T7, Ti, ThR, ThS;
T7 = T1 + T6;
Ti = Tc + Th;
Tj = T7 + Ti;
TcL = T7 - Ti;
ThR = TgR - TgQ;
ThS = Tc - Th;
ThT = ThR - ThS;
Tin = ThS + ThR;
}
{
E T67, T6a, TgP, TgS;
T67 = T1 - T6;
T6a = T68 - T69;
T6b = T67 - T6a;
Taz = T67 + T6a;
TgP = T68 + T69;
TgS = TgQ + TgR;
TgT = TgP + TgS;
Thn = TgS - TgP;
}
}
{
E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
{
E Tl, Tn, Tk, Tm;
Tl = ri[WS(rs, 8)];
Tn = ii[WS(rs, 8)];
Tk = W[14];
Tm = W[15];
To = FMA(Tk, Tl, Tm * Tn);
T6c = FNMS(Tm, Tl, Tk * Tn);
}
{
E Tq, Ts, Tp, Tr;
Tq = ri[WS(rs, 40)];
Ts = ii[WS(rs, 40)];
Tp = W[78];
Tr = W[79];
Tt = FMA(Tp, Tq, Tr * Ts);
T6d = FNMS(Tr, Tq, Tp * Ts);
}
T6e = T6c - T6d;
T6f = To - Tt;
{
E Tw, Ty, Tv, Tx;
Tw = ri[WS(rs, 56)];
Ty = ii[WS(rs, 56)];
Tv = W[110];
Tx = W[111];
Tz = FMA(Tv, Tw, Tx * Ty);
T6i = FNMS(Tx, Tw, Tv * Ty);
}
{
E TB, TD, TA, TC;
TB = ri[WS(rs, 24)];
TD = ii[WS(rs, 24)];
TA = W[46];
TC = W[47];
TE = FMA(TA, TB, TC * TD);
T6j = FNMS(TC, TB, TA * TD);
}
T6h = Tz - TE;
T6k = T6i - T6j;
{
E Tu, TF, TcM, TcN;
Tu = To + Tt;
TF = Tz + TE;
TG = Tu + TF;
Thm = TF - Tu;
TcM = T6c + T6d;
TcN = T6i + T6j;
TcO = TcM - TcN;
TgO = TcM + TcN;
}
{
E T6g, T6l, TaA, TaB;
T6g = T6e - T6f;
T6l = T6h + T6k;
T6m = KP707106781 * (T6g - T6l);
ThQ = KP707106781 * (T6g + T6l);
TaA = T6f + T6e;
TaB = T6h - T6k;
TaC = KP707106781 * (TaA + TaB);
Tim = KP707106781 * (TaB - TaA);
}
}
{
E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
{
E TM, T6o, TR, T6p;
{
E TJ, TL, TI, TK;
TJ = ri[WS(rs, 4)];
TL = ii[WS(rs, 4)];
TI = W[6];
TK = W[7];
TM = FMA(TI, TJ, TK * TL);
T6o = FNMS(TK, TJ, TI * TL);
}
{
E TO, TQ, TN, TP;
TO = ri[WS(rs, 36)];
TQ = ii[WS(rs, 36)];
TN = W[70];
TP = W[71];
TR = FMA(TN, TO, TP * TQ);
T6p = FNMS(TP, TO, TN * TQ);
}
TS = TM + TR;
TcQ = T6o + T6p;
T6q = T6o - T6p;
T6t = TM - TR;
}
{
E TX, T6u, T12, T6v;
{
E TU, TW, TT, TV;
TU = ri[WS(rs, 20)];
TW = ii[WS(rs, 20)];
TT = W[38];
TV = W[39];
TX = FMA(TT, TU, TV * TW);
T6u = FNMS(TV, TU, TT * TW);
}
{
E TZ, T11, TY, T10;
TZ = ri[WS(rs, 52)];
T11 = ii[WS(rs, 52)];
TY = W[102];
T10 = W[103];
T12 = FMA(TY, TZ, T10 * T11);
T6v = FNMS(T10, TZ, TY * T11);
}
T13 = TX + T12;
TcR = T6u + T6v;
T6r = TX - T12;
T6w = T6u - T6v;
}
T14 = TS + T13;
Tfq = TcQ + TcR;
T6s = T6q + T6r;
T6x = T6t - T6w;
T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
{
E TaE, TaF, TcS, TcT;
TaE = T6q - T6r;
TaF = T6t + T6w;
TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
TcS = TcQ - TcR;
TcT = TS - T13;
TcU = TcS - TcT;
TeE = TcT + TcS;
}
}
{
E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
{
E T19, T6z, T1e, T6A;
{
E T16, T18, T15, T17;
T16 = ri[WS(rs, 60)];
T18 = ii[WS(rs, 60)];
T15 = W[118];
T17 = W[119];
T19 = FMA(T15, T16, T17 * T18);
T6z = FNMS(T17, T16, T15 * T18);
}
{
E T1b, T1d, T1a, T1c;
T1b = ri[WS(rs, 28)];
T1d = ii[WS(rs, 28)];
T1a = W[54];
T1c = W[55];
T1e = FMA(T1a, T1b, T1c * T1d);
T6A = FNMS(T1c, T1b, T1a * T1d);
}
T1f = T19 + T1e;
TcW = T6z + T6A;
T6B = T6z - T6A;
T6E = T19 - T1e;
}
{
E T1k, T6F, T1p, T6G;
{
E T1h, T1j, T1g, T1i;
T1h = ri[WS(rs, 12)];
T1j = ii[WS(rs, 12)];
T1g = W[22];
T1i = W[23];
T1k = FMA(T1g, T1h, T1i * T1j);
T6F = FNMS(T1i, T1h, T1g * T1j);
}
{
E T1m, T1o, T1l, T1n;
T1m = ri[WS(rs, 44)];
T1o = ii[WS(rs, 44)];
T1l = W[86];
T1n = W[87];
T1p = FMA(T1l, T1m, T1n * T1o);
T6G = FNMS(T1n, T1m, T1l * T1o);
}
T1q = T1k + T1p;
TcX = T6F + T6G;
T6C = T1k - T1p;
T6H = T6F - T6G;
}
T1r = T1f + T1q;
Tfr = TcW + TcX;
T6D = T6B + T6C;
T6I = T6E - T6H;
T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
{
E TaH, TaI, TcV, TcY;
TaH = T6B - T6C;
TaI = T6E + T6H;
TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
TcV = T1f - T1q;
TcY = TcW - TcX;
TcZ = TcV + TcY;
TeF = TcV - TcY;
}
}
{
E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
E T6Z, T2c, Td9, T6R, T6U;
{
E T1v, T1x, T1u, T1w;
T1v = ri[WS(rs, 2)];
T1x = ii[WS(rs, 2)];
T1u = W[2];
T1w = W[3];
T1y = FMA(T1u, T1v, T1w * T1x);
T6M = FNMS(T1w, T1v, T1u * T1x);
}
{
E T1A, T1C, T1z, T1B;
T1A = ri[WS(rs, 34)];
T1C = ii[WS(rs, 34)];
T1z = W[66];
T1B = W[67];
T1D = FMA(T1z, T1A, T1B * T1C);
T6N = FNMS(T1B, T1A, T1z * T1C);
}
T1E = T1y + T1D;
Td2 = T6M + T6N;
{
E T1G, T1I, T1F, T1H;
T1G = ri[WS(rs, 18)];
T1I = ii[WS(rs, 18)];
T1F = W[34];
T1H = W[35];
T1J = FMA(T1F, T1G, T1H * T1I);
T74 = FNMS(T1H, T1G, T1F * T1I);
}
{
E T1L, T1N, T1K, T1M;
T1L = ri[WS(rs, 50)];
T1N = ii[WS(rs, 50)];
T1K = W[98];
T1M = W[99];
T1O = FMA(T1K, T1L, T1M * T1N);
T75 = FNMS(T1M, T1L, T1K * T1N);
}
T1P = T1J + T1O;
Td3 = T74 + T75;
{
E T1V, T6X, T20, T6Y;
{
E T1S, T1U, T1R, T1T;
T1S = ri[WS(rs, 10)];
T1U = ii[WS(rs, 10)];
T1R = W[18];
T1T = W[19];
T1V = FMA(T1R, T1S, T1T * T1U);
T6X = FNMS(T1T, T1S, T1R * T1U);
}
{
E T1X, T1Z, T1W, T1Y;
T1X = ri[WS(rs, 42)];
T1Z = ii[WS(rs, 42)];
T1W = W[82];
T1Y = W[83];
T20 = FMA(T1W, T1X, T1Y * T1Z);
T6Y = FNMS(T1Y, T1X, T1W * T1Z);
}
T21 = T1V + T20;
Td8 = T6X + T6Y;
T6W = T1V - T20;
T6Z = T6X - T6Y;
}
{
E T26, T6S, T2b, T6T;
{
E T23, T25, T22, T24;
T23 = ri[WS(rs, 58)];
T25 = ii[WS(rs, 58)];
T22 = W[114];
T24 = W[115];
T26 = FMA(T22, T23, T24 * T25);
T6S = FNMS(T24, T23, T22 * T25);
}
{
E T28, T2a, T27, T29;
T28 = ri[WS(rs, 26)];
T2a = ii[WS(rs, 26)];
T27 = W[50];
T29 = W[51];
T2b = FMA(T27, T28, T29 * T2a);
T6T = FNMS(T29, T28, T27 * T2a);
}
T2c = T26 + T2b;
Td9 = T6S + T6T;
T6R = T26 - T2b;
T6U = T6S - T6T;
}
T1Q = T1E + T1P;
T2d = T21 + T2c;
Tfx = T1Q - T2d;
Tfu = Td2 + Td3;
Tfv = Td8 + Td9;
Tfw = Tfu - Tfv;
{
E T6O, T6P, Td7, Tda;
T6O = T6M - T6N;
T6P = T1J - T1O;
T6Q = T6O + T6P;
TaM = T6O - T6P;
Td7 = T1E - T1P;
Tda = Td8 - Td9;
Tdb = Td7 - Tda;
TeJ = Td7 + Tda;
}
{
E T6V, T70, T78, T79;
T6V = T6R - T6U;
T70 = T6W + T6Z;
T71 = KP707106781 * (T6V - T70);
TaQ = KP707106781 * (T70 + T6V);
T78 = T6Z - T6W;
T79 = T6R + T6U;
T7a = KP707106781 * (T78 - T79);
TaN = KP707106781 * (T78 + T79);
}
{
E Td4, Td5, T73, T76;
Td4 = Td2 - Td3;
Td5 = T2c - T21;
Td6 = Td4 - Td5;
TeI = Td4 + Td5;
T73 = T1y - T1D;
T76 = T74 - T75;
T77 = T73 - T76;
TaP = T73 + T76;
}
}
{
E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
E T7q, T2X, Tdk, T7i, T7l;
{
E T2g, T2i, T2f, T2h;
T2g = ri[WS(rs, 62)];
T2i = ii[WS(rs, 62)];
T2f = W[122];
T2h = W[123];
T2j = FMA(T2f, T2g, T2h * T2i);
T7d = FNMS(T2h, T2g, T2f * T2i);
}
{
E T2l, T2n, T2k, T2m;
T2l = ri[WS(rs, 30)];
T2n = ii[WS(rs, 30)];
T2k = W[58];
T2m = W[59];
T2o = FMA(T2k, T2l, T2m * T2n);
T7e = FNMS(T2m, T2l, T2k * T2n);
}
T2p = T2j + T2o;
Tdd = T7d + T7e;
{
E T2r, T2t, T2q, T2s;
T2r = ri[WS(rs, 14)];
T2t = ii[WS(rs, 14)];
T2q = W[26];
T2s = W[27];
T2u = FMA(T2q, T2r, T2s * T2t);
T7v = FNMS(T2s, T2r, T2q * T2t);
}
{
E T2w, T2y, T2v, T2x;
T2w = ri[WS(rs, 46)];
T2y = ii[WS(rs, 46)];
T2v = W[90];
T2x = W[91];
T2z = FMA(T2v, T2w, T2x * T2y);
T7w = FNMS(T2x, T2w, T2v * T2y);
}
T2A = T2u + T2z;
Tde = T7v + T7w;
{
E T2G, T7o, T2L, T7p;
{
E T2D, T2F, T2C, T2E;
T2D = ri[WS(rs, 6)];
T2F = ii[WS(rs, 6)];
T2C = W[10];
T2E = W[11];
T2G = FMA(T2C, T2D, T2E * T2F);
T7o = FNMS(T2E, T2D, T2C * T2F);
}
{
E T2I, T2K, T2H, T2J;
T2I = ri[WS(rs, 38)];
T2K = ii[WS(rs, 38)];
T2H = W[74];
T2J = W[75];
T2L = FMA(T2H, T2I, T2J * T2K);
T7p = FNMS(T2J, T2I, T2H * T2K);
}
T2M = T2G + T2L;
Tdj = T7o + T7p;
T7n = T2G - T2L;
T7q = T7o - T7p;
}
{
E T2R, T7j, T2W, T7k;
{
E T2O, T2Q, T2N, T2P;
T2O = ri[WS(rs, 54)];
T2Q = ii[WS(rs, 54)];
T2N = W[106];
T2P = W[107];
T2R = FMA(T2N, T2O, T2P * T2Q);
T7j = FNMS(T2P, T2O, T2N * T2Q);
}
{
E T2T, T2V, T2S, T2U;
T2T = ri[WS(rs, 22)];
T2V = ii[WS(rs, 22)];
T2S = W[42];
T2U = W[43];
T2W = FMA(T2S, T2T, T2U * T2V);
T7k = FNMS(T2U, T2T, T2S * T2V);
}
T2X = T2R + T2W;
Tdk = T7j + T7k;
T7i = T2R - T2W;
T7l = T7j - T7k;
}
T2B = T2p + T2A;
T2Y = T2M + T2X;
Tfz = T2B - T2Y;
TfA = Tdd + Tde;
TfB = Tdj + Tdk;
TfC = TfA - TfB;
{
E T7f, T7g, Tdi, Tdl;
T7f = T7d - T7e;
T7g = T2u - T2z;
T7h = T7f + T7g;
TaW = T7f - T7g;
Tdi = T2p - T2A;
Tdl = Tdj - Tdk;
Tdm = Tdi - Tdl;
TeM = Tdi + Tdl;
}
{
E T7m, T7r, T7z, T7A;
T7m = T7i - T7l;
T7r = T7n + T7q;
T7s = KP707106781 * (T7m - T7r);
TaU = KP707106781 * (T7r + T7m);
T7z = T7q - T7n;
T7A = T7i + T7l;
T7B = KP707106781 * (T7z - T7A);
TaX = KP707106781 * (T7z + T7A);
}
{
E Tdf, Tdg, T7u, T7x;
Tdf = Tdd - Tde;
Tdg = T2X - T2M;
Tdh = Tdf - Tdg;
TeL = Tdf + Tdg;
T7u = T2j - T2o;
T7x = T7v - T7w;
T7y = T7u - T7x;
TaT = T7u + T7x;
}
}
{
E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
E T8H, T5h, TdT, T8J, T8M;
{
E T4A, T4C, T4z, T4B;
T4A = ri[WS(rs, 63)];
T4C = ii[WS(rs, 63)];
T4z = W[124];
T4B = W[125];
T4D = FMA(T4z, T4A, T4B * T4C);
T9e = FNMS(T4B, T4A, T4z * T4C);
}
{
E T4F, T4H, T4E, T4G;
T4F = ri[WS(rs, 31)];
T4H = ii[WS(rs, 31)];
T4E = W[60];
T4G = W[61];
T4I = FMA(T4E, T4F, T4G * T4H);
T9f = FNMS(T4G, T4F, T4E * T4H);
}
T4J = T4D + T4I;
Te8 = T9e + T9f;
{
E T4L, T4N, T4K, T4M;
T4L = ri[WS(rs, 15)];
T4N = ii[WS(rs, 15)];
T4K = W[28];
T4M = W[29];
T4O = FMA(T4K, T4L, T4M * T4N);
T8A = FNMS(T4M, T4L, T4K * T4N);
}
{
E T4Q, T4S, T4P, T4R;
T4Q = ri[WS(rs, 47)];
T4S = ii[WS(rs, 47)];
T4P = W[92];
T4R = W[93];
T4T = FMA(T4P, T4Q, T4R * T4S);
T8B = FNMS(T4R, T4Q, T4P * T4S);
}
T4U = T4O + T4T;
Te9 = T8A + T8B;
{
E T50, T8E, T55, T8F;
{
E T4X, T4Z, T4W, T4Y;
T4X = ri[WS(rs, 7)];
T4Z = ii[WS(rs, 7)];
T4W = W[12];
T4Y = W[13];
T50 = FMA(T4W, T4X, T4Y * T4Z);
T8E = FNMS(T4Y, T4X, T4W * T4Z);
}
{
E T52, T54, T51, T53;
T52 = ri[WS(rs, 39)];
T54 = ii[WS(rs, 39)];
T51 = W[76];
T53 = W[77];
T55 = FMA(T51, T52, T53 * T54);
T8F = FNMS(T53, T52, T51 * T54);
}
T56 = T50 + T55;
TdS = T8E + T8F;
T8G = T8E - T8F;
T8H = T50 - T55;
}
{
E T5b, T8K, T5g, T8L;
{
E T58, T5a, T57, T59;
T58 = ri[WS(rs, 55)];
T5a = ii[WS(rs, 55)];
T57 = W[108];
T59 = W[109];
T5b = FMA(T57, T58, T59 * T5a);
T8K = FNMS(T59, T58, T57 * T5a);
}
{
E T5d, T5f, T5c, T5e;
T5d = ri[WS(rs, 23)];
T5f = ii[WS(rs, 23)];
T5c = W[44];
T5e = W[45];
T5g = FMA(T5c, T5d, T5e * T5f);
T8L = FNMS(T5e, T5d, T5c * T5f);
}
T5h = T5b + T5g;
TdT = T8K + T8L;
T8J = T5b - T5g;
T8M = T8K - T8L;
}
{
E T4V, T5i, Tea, Teb;
T4V = T4J + T4U;
T5i = T56 + T5h;
T5j = T4V + T5i;
TfR = T4V - T5i;
Tea = Te8 - Te9;
Teb = T5h - T56;
Tec = Tea - Teb;
Tf0 = Tea + Teb;
}
{
E TfW, TfX, T8z, T8C;
TfW = Te8 + Te9;
TfX = TdS + TdT;
TfY = TfW - TfX;
Tgy = TfW + TfX;
T8z = T4D - T4I;
T8C = T8A - T8B;
T8D = T8z - T8C;
Tbl = T8z + T8C;
}
{
E T8I, T8N, T9j, T9k;
T8I = T8G - T8H;
T8N = T8J + T8M;
T8O = KP707106781 * (T8I - T8N);
Tbx = KP707106781 * (T8I + T8N);
T9j = T8J - T8M;
T9k = T8H + T8G;
T9l = KP707106781 * (T9j - T9k);
Tbm = KP707106781 * (T9k + T9j);
}
{
E TdR, TdU, T9g, T9h;
TdR = T4J - T4U;
TdU = TdS - TdT;
TdV = TdR - TdU;
TeX = TdR + TdU;
T9g = T9e - T9f;
T9h = T4O - T4T;
T9i = T9g + T9h;
Tbw = T9g - T9h;
}
}
{
E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
E T7T, T3K, TdJ, T7L, T7O;
{
E T33, T35, T32, T34;
T33 = ri[WS(rs, 1)];
T35 = ii[WS(rs, 1)];
T32 = W[0];
T34 = W[1];
T36 = FMA(T32, T33, T34 * T35);
T7G = FNMS(T34, T33, T32 * T35);
}
{
E T38, T3a, T37, T39;
T38 = ri[WS(rs, 33)];
T3a = ii[WS(rs, 33)];
T37 = W[64];
T39 = W[65];
T3b = FMA(T37, T38, T39 * T3a);
T7H = FNMS(T39, T38, T37 * T3a);
}
T3c = T36 + T3b;
Tdq = T7G + T7H;
{
E T3e, T3g, T3d, T3f;
T3e = ri[WS(rs, 17)];
T3g = ii[WS(rs, 17)];
T3d = W[32];
T3f = W[33];
T3h = FMA(T3d, T3e, T3f * T3g);
T8m = FNMS(T3f, T3e, T3d * T3g);
}
{
E T3j, T3l, T3i, T3k;
T3j = ri[WS(rs, 49)];
T3l = ii[WS(rs, 49)];
T3i = W[96];
T3k = W[97];
T3m = FMA(T3i, T3j, T3k * T3l);
T8n = FNMS(T3k, T3j, T3i * T3l);
}
T3n = T3h + T3m;
Tdr = T8m + T8n;
{
E T3t, T7R, T3y, T7S;
{
E T3q, T3s, T3p, T3r;
T3q = ri[WS(rs, 9)];
T3s = ii[WS(rs, 9)];
T3p = W[16];
T3r = W[17];
T3t = FMA(T3p, T3q, T3r * T3s);
T7R = FNMS(T3r, T3q, T3p * T3s);
}
{
E T3v, T3x, T3u, T3w;
T3v = ri[WS(rs, 41)];
T3x = ii[WS(rs, 41)];
T3u = W[80];
T3w = W[81];
T3y = FMA(T3u, T3v, T3w * T3x);
T7S = FNMS(T3w, T3v, T3u * T3x);
}
T3z = T3t + T3y;
TdI = T7R + T7S;
T7Q = T3t - T3y;
T7T = T7R - T7S;
}
{
E T3E, T7M, T3J, T7N;
{
E T3B, T3D, T3A, T3C;
T3B = ri[WS(rs, 57)];
T3D = ii[WS(rs, 57)];
T3A = W[112];
T3C = W[113];
T3E = FMA(T3A, T3B, T3C * T3D);
T7M = FNMS(T3C, T3B, T3A * T3D);
}
{
E T3G, T3I, T3F, T3H;
T3G = ri[WS(rs, 25)];
T3I = ii[WS(rs, 25)];
T3F = W[48];
T3H = W[49];
T3J = FMA(T3F, T3G, T3H * T3I);
T7N = FNMS(T3H, T3G, T3F * T3I);
}
T3K = T3E + T3J;
TdJ = T7M + T7N;
T7L = T3E - T3J;
T7O = T7M - T7N;
}
{
E T3o, T3L, TdH, TdK;
T3o = T3c + T3n;
T3L = T3z + T3K;
T3M = T3o + T3L;
TfL = T3o - T3L;
TdH = T3c - T3n;
TdK = TdI - TdJ;
TdL = TdH - TdK;
TeQ = TdH + TdK;
}
{
E TfG, TfH, T7I, T7J;
TfG = Tdq + Tdr;
TfH = TdI + TdJ;
TfI = TfG - TfH;
Tgt = TfG + TfH;
T7I = T7G - T7H;
T7J = T3h - T3m;
T7K = T7I + T7J;
Tb2 = T7I - T7J;
}
{
E T7P, T7U, T8q, T8r;
T7P = T7L - T7O;
T7U = T7Q + T7T;
T7V = KP707106781 * (T7P - T7U);
Tbe = KP707106781 * (T7U + T7P);
T8q = T7T - T7Q;
T8r = T7L + T7O;
T8s = KP707106781 * (T8q - T8r);
Tb3 = KP707106781 * (T8q + T8r);
}
{
E Tds, Tdt, T8l, T8o;
Tds = Tdq - Tdr;
Tdt = T3K - T3z;
Tdu = Tds - Tdt;
TeT = Tds + Tdt;
T8l = T36 - T3b;
T8o = T8m - T8n;
T8p = T8l - T8o;
Tbd = T8l + T8o;
}
}
{
E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
E T84;
{
E T3R, T88, T3W, T89;
{
E T3O, T3Q, T3N, T3P;
T3O = ri[WS(rs, 5)];
T3Q = ii[WS(rs, 5)];
T3N = W[8];
T3P = W[9];
T3R = FMA(T3N, T3O, T3P * T3Q);
T88 = FNMS(T3P, T3O, T3N * T3Q);
}
{
E T3T, T3V, T3S, T3U;
T3T = ri[WS(rs, 37)];
T3V = ii[WS(rs, 37)];
T3S = W[72];
T3U = W[73];
T3W = FMA(T3S, T3T, T3U * T3V);
T89 = FNMS(T3U, T3T, T3S * T3V);
}
T3X = T3R + T3W;
TdB = T88 + T89;
T8a = T88 - T89;
T8d = T3R - T3W;
}
{
E T4p, T7Y, T4u, T7Z;
{
E T4m, T4o, T4l, T4n;
T4m = ri[WS(rs, 13)];
T4o = ii[WS(rs, 13)];
T4l = W[24];
T4n = W[25];
T4p = FMA(T4l, T4m, T4n * T4o);
T7Y = FNMS(T4n, T4m, T4l * T4o);
}
{
E T4r, T4t, T4q, T4s;
T4r = ri[WS(rs, 45)];
T4t = ii[WS(rs, 45)];
T4q = W[88];
T4s = W[89];
T4u = FMA(T4q, T4r, T4s * T4t);
T7Z = FNMS(T4s, T4r, T4q * T4t);
}
T4v = T4p + T4u;
Tdx = T7Y + T7Z;
T80 = T7Y - T7Z;
T85 = T4p - T4u;
}
{
E T42, T8e, T47, T8f;
{
E T3Z, T41, T3Y, T40;
T3Z = ri[WS(rs, 21)];
T41 = ii[WS(rs, 21)];
T3Y = W[40];
T40 = W[41];
T42 = FMA(T3Y, T3Z, T40 * T41);
T8e = FNMS(T40, T3Z, T3Y * T41);
}
{
E T44, T46, T43, T45;
T44 = ri[WS(rs, 53)];
T46 = ii[WS(rs, 53)];
T43 = W[104];
T45 = W[105];
T47 = FMA(T43, T44, T45 * T46);
T8f = FNMS(T45, T44, T43 * T46);
}
T48 = T42 + T47;
TdC = T8e + T8f;
T8b = T42 - T47;
T8g = T8e - T8f;
}
{
E T4e, T82, T4j, T83;
{
E T4b, T4d, T4a, T4c;
T4b = ri[WS(rs, 61)];
T4d = ii[WS(rs, 61)];
T4a = W[120];
T4c = W[121];
T4e = FMA(T4a, T4b, T4c * T4d);
T82 = FNMS(T4c, T4b, T4a * T4d);
}
{
E T4g, T4i, T4f, T4h;
T4g = ri[WS(rs, 29)];
T4i = ii[WS(rs, 29)];
T4f = W[56];
T4h = W[57];
T4j = FMA(T4f, T4g, T4h * T4i);
T83 = FNMS(T4h, T4g, T4f * T4i);
}
T4k = T4e + T4j;
Tdw = T82 + T83;
T7X = T4e - T4j;
T84 = T82 - T83;
}
{
E T49, T4w, TdA, TdD;
T49 = T3X + T48;
T4w = T4k + T4v;
T4x = T49 + T4w;
TfJ = T4w - T49;
TdA = T3X - T48;
TdD = TdB - TdC;
TdE = TdA + TdD;
TdM = TdD - TdA;
}
{
E TfM, TfN, T81, T86;
TfM = TdB + TdC;
TfN = Tdw + Tdx;
TfO = TfM - TfN;
Tgu = TfM + TfN;
T81 = T7X - T80;
T86 = T84 + T85;
T87 = FNMS(KP923879532, T86, KP382683432 * T81);
T8v = FMA(KP382683432, T86, KP923879532 * T81);
}
{
E T8c, T8h, Tb8, Tb9;
T8c = T8a + T8b;
T8h = T8d - T8g;
T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
Tb8 = T8a - T8b;
Tb9 = T8d + T8g;
Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
}
{
E Tdv, Tdy, Tb5, Tb6;
Tdv = T4k - T4v;
Tdy = Tdw - Tdx;
Tdz = Tdv - Tdy;
TdN = Tdv + Tdy;
Tb5 = T7X + T80;
Tb6 = T84 - T85;
Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
}
}
{
E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
E T96;
{
E T5o, T8Q, T5t, T8R;
{
E T5l, T5n, T5k, T5m;
T5l = ri[WS(rs, 3)];
T5n = ii[WS(rs, 3)];
T5k = W[4];
T5m = W[5];
T5o = FMA(T5k, T5l, T5m * T5n);
T8Q = FNMS(T5m, T5l, T5k * T5n);
}
{
E T5q, T5s, T5p, T5r;
T5q = ri[WS(rs, 35)];
T5s = ii[WS(rs, 35)];
T5p = W[68];
T5r = W[69];
T5t = FMA(T5p, T5q, T5r * T5s);
T8R = FNMS(T5r, T5q, T5p * T5s);
}
T5u = T5o + T5t;
TdW = T8Q + T8R;
T8S = T8Q - T8R;
T8V = T5o - T5t;
}
{
E T5W, T97, T61, T98;
{
E T5T, T5V, T5S, T5U;
T5T = ri[WS(rs, 11)];
T5V = ii[WS(rs, 11)];
T5S = W[20];
T5U = W[21];
T5W = FMA(T5S, T5T, T5U * T5V);
T97 = FNMS(T5U, T5T, T5S * T5V);
}
{
E T5Y, T60, T5X, T5Z;
T5Y = ri[WS(rs, 43)];
T60 = ii[WS(rs, 43)];
T5X = W[84];
T5Z = W[85];
T61 = FMA(T5X, T5Y, T5Z * T60);
T98 = FNMS(T5Z, T5Y, T5X * T60);
}
T62 = T5W + T61;
Te3 = T97 + T98;
T94 = T5W - T61;
T99 = T97 - T98;
}
{
E T5z, T8W, T5E, T8X;
{
E T5w, T5y, T5v, T5x;
T5w = ri[WS(rs, 19)];
T5y = ii[WS(rs, 19)];
T5v = W[36];
T5x = W[37];
T5z = FMA(T5v, T5w, T5x * T5y);
T8W = FNMS(T5x, T5w, T5v * T5y);
}
{
E T5B, T5D, T5A, T5C;
T5B = ri[WS(rs, 51)];
T5D = ii[WS(rs, 51)];
T5A = W[100];
T5C = W[101];
T5E = FMA(T5A, T5B, T5C * T5D);
T8X = FNMS(T5C, T5B, T5A * T5D);
}
T5F = T5z + T5E;
TdX = T8W + T8X;
T8T = T5z - T5E;
T8Y = T8W - T8X;
}
{
E T5L, T91, T5Q, T92;
{
E T5I, T5K, T5H, T5J;
T5I = ri[WS(rs, 59)];
T5K = ii[WS(rs, 59)];
T5H = W[116];
T5J = W[117];
T5L = FMA(T5H, T5I, T5J * T5K);
T91 = FNMS(T5J, T5I, T5H * T5K);
}
{
E T5N, T5P, T5M, T5O;
T5N = ri[WS(rs, 27)];
T5P = ii[WS(rs, 27)];
T5M = W[52];
T5O = W[53];
T5Q = FMA(T5M, T5N, T5O * T5P);
T92 = FNMS(T5O, T5N, T5M * T5P);
}
T5R = T5L + T5Q;
Te2 = T91 + T92;
T93 = T91 - T92;
T96 = T5L - T5Q;
}
{
E T5G, T63, Te1, Te4;
T5G = T5u + T5F;
T63 = T5R + T62;
T64 = T5G + T63;
TfZ = T63 - T5G;
Te1 = T5R - T62;
Te4 = Te2 - Te3;
Te5 = Te1 + Te4;
Ted = Te1 - Te4;
}
{
E TfS, TfT, T8U, T8Z;
TfS = TdW + TdX;
TfT = Te2 + Te3;
TfU = TfS - TfT;
Tgz = TfS + TfT;
T8U = T8S + T8T;
T8Z = T8V - T8Y;
T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
}
{
E T95, T9a, Tbr, Tbs;
T95 = T93 + T94;
T9a = T96 - T99;
T9b = FMA(KP382683432, T95, KP923879532 * T9a);
T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
Tbr = T93 - T94;
Tbs = T96 + T99;
Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
}
{
E TdY, TdZ, Tbo, Tbp;
TdY = TdW - TdX;
TdZ = T5u - T5F;
Te0 = TdY - TdZ;
Tee = TdZ + TdY;
Tbo = T8S - T8T;
Tbp = T8V + T8Y;
Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
}
}
{
E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
E TgM;
{
E TH, T1s, TgI, TgJ;
TH = Tj + TG;
T1s = T14 + T1r;
T1t = TH + T1s;
Tgn = TH - T1s;
TgI = Tgt + Tgu;
TgJ = Tgy + Tgz;
TgK = TgI - TgJ;
TgL = TgI + TgJ;
}
{
E TgN, TgU, T2e, T2Z;
TgN = Tfq + Tfr;
TgU = TgO + TgT;
TgV = TgN + TgU;
Th1 = TgU - TgN;
T2e = T1Q + T2d;
T2Z = T2B + T2Y;
T30 = T2e + T2Z;
Th0 = T2Z - T2e;
}
{
E T4y, T65, Tgs, Tgv;
T4y = T3M + T4x;
T65 = T5j + T64;
T66 = T4y + T65;
TgX = T65 - T4y;
Tgs = T3M - T4x;
Tgv = Tgt - Tgu;
Tgw = Tgs + Tgv;
TgE = Tgv - Tgs;
}
{
E Tgx, TgA, Tgo, Tgp;
Tgx = T5j - T64;
TgA = Tgy - Tgz;
TgB = Tgx - TgA;
TgF = Tgx + TgA;
Tgo = Tfu + Tfv;
Tgp = TfA + TfB;
Tgq = Tgo - Tgp;
TgM = Tgo + Tgp;
}
{
E T31, TgW, TgH, TgY;
T31 = T1t + T30;
ri[WS(rs, 32)] = T31 - T66;
ri[0] = T31 + T66;
TgW = TgM + TgV;
ii[0] = TgL + TgW;
ii[WS(rs, 32)] = TgW - TgL;
TgH = T1t - T30;
ri[WS(rs, 48)] = TgH - TgK;
ri[WS(rs, 16)] = TgH + TgK;
TgY = TgV - TgM;
ii[WS(rs, 16)] = TgX + TgY;
ii[WS(rs, 48)] = TgY - TgX;
}
{
E Tgr, TgC, TgZ, Th2;
Tgr = Tgn + Tgq;
TgC = KP707106781 * (Tgw + TgB);
ri[WS(rs, 40)] = Tgr - TgC;
ri[WS(rs, 8)] = Tgr + TgC;
TgZ = KP707106781 * (TgE + TgF);
Th2 = Th0 + Th1;
ii[WS(rs, 8)] = TgZ + Th2;
ii[WS(rs, 40)] = Th2 - TgZ;
}
{
E TgD, TgG, Th3, Th4;
TgD = Tgn - Tgq;
TgG = KP707106781 * (TgE - TgF);
ri[WS(rs, 56)] = TgD - TgG;
ri[WS(rs, 24)] = TgD + TgG;
Th3 = KP707106781 * (TgB - Tgw);
Th4 = Th1 - Th0;
ii[WS(rs, 24)] = Th3 + Th4;
ii[WS(rs, 56)] = Th4 - Th3;
}
}
{
E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
E Tg5;
{
E Tfp, Tfs, Tgf, Tgg;
Tfp = Tj - TG;
Tfs = Tfq - Tfr;
Tft = Tfp - Tfs;
Tg7 = Tfp + Tfs;
Tgf = TfR + TfU;
Tgg = TfY + TfZ;
Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
}
{
E Th7, Th8, Tfy, TfD;
Th7 = T1r - T14;
Th8 = TgT - TgO;
Th9 = Th7 + Th8;
Thf = Th8 - Th7;
Tfy = Tfw - Tfx;
TfD = Tfz + TfC;
TfE = KP707106781 * (Tfy - TfD);
Th6 = KP707106781 * (Tfy + TfD);
}
{
E TfK, TfP, Tg8, Tg9;
TfK = TfI - TfJ;
TfP = TfL - TfO;
TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
Tg8 = Tfx + Tfw;
Tg9 = Tfz - TfC;
Tga = KP707106781 * (Tg8 + Tg9);
The = KP707106781 * (Tg9 - Tg8);
}
{
E Tgc, Tgd, TfV, Tg0;
Tgc = TfI + TfJ;
Tgd = TfL + TfO;
Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
TfV = TfR - TfU;
Tg0 = TfY - TfZ;
Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
}
{
E TfF, Tg2, Thd, Thg;
TfF = Tft + TfE;
Tg2 = TfQ + Tg1;
ri[WS(rs, 44)] = TfF - Tg2;
ri[WS(rs, 12)] = TfF + Tg2;
Thd = Tg4 + Tg5;
Thg = The + Thf;
ii[WS(rs, 12)] = Thd + Thg;
ii[WS(rs, 44)] = Thg - Thd;
}
{
E Tg3, Tg6, Thh, Thi;
Tg3 = Tft - TfE;
Tg6 = Tg4 - Tg5;
ri[WS(rs, 60)] = Tg3 - Tg6;
ri[WS(rs, 28)] = Tg3 + Tg6;
Thh = Tg1 - TfQ;
Thi = Thf - The;
ii[WS(rs, 28)] = Thh + Thi;
ii[WS(rs, 60)] = Thi - Thh;
}
{
E Tgb, Tgi, Th5, Tha;
Tgb = Tg7 + Tga;
Tgi = Tge + Tgh;
ri[WS(rs, 36)] = Tgb - Tgi;
ri[WS(rs, 4)] = Tgb + Tgi;
Th5 = Tgk + Tgl;
Tha = Th6 + Th9;
ii[WS(rs, 4)] = Th5 + Tha;
ii[WS(rs, 36)] = Tha - Th5;
}
{
E Tgj, Tgm, Thb, Thc;
Tgj = Tg7 - Tga;
Tgm = Tgk - Tgl;
ri[WS(rs, 52)] = Tgj - Tgm;
ri[WS(rs, 20)] = Tgj + Tgm;
Thb = Tgh - Tge;
Thc = Th9 - Th6;
ii[WS(rs, 20)] = Thb + Thc;
ii[WS(rs, 52)] = Thc - Thb;
}
}
{
E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
E Teu;
{
E TcP, Td0, Teo, Tep;
TcP = TcL - TcO;
Td0 = KP707106781 * (TcU - TcZ);
Td1 = TcP - Td0;
Ten = TcP + Td0;
{
E Tdc, Tdn, ThB, ThC;
Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
Tdo = Tdc - Tdn;
ThA = Tdc + Tdn;
ThB = KP707106781 * (TeF - TeE);
ThC = Thn - Thm;
ThD = ThB + ThC;
ThJ = ThC - ThB;
}
Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
Teq = Teo + Tep;
ThI = Tep - Teo;
{
E Te7, Tev, Teg, Tew, Te6, Tef;
Te6 = KP707106781 * (Te0 - Te5);
Te7 = TdV - Te6;
Tev = TdV + Te6;
Tef = KP707106781 * (Ted - Tee);
Teg = Tec - Tef;
Tew = Tec + Tef;
Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
}
{
E TdG, Tes, TdP, Tet, TdF, TdO;
TdF = KP707106781 * (Tdz - TdE);
TdG = Tdu - TdF;
Tes = Tdu + TdF;
TdO = KP707106781 * (TdM - TdN);
TdP = TdL - TdO;
Tet = TdL + TdO;
TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
}
}
{
E Tdp, Tei, ThH, ThK;
Tdp = Td1 + Tdo;
Tei = TdQ + Teh;
ri[WS(rs, 46)] = Tdp - Tei;
ri[WS(rs, 14)] = Tdp + Tei;
ThH = Tek + Tel;
ThK = ThI + ThJ;
ii[WS(rs, 14)] = ThH + ThK;
ii[WS(rs, 46)] = ThK - ThH;
}
{
E Tej, Tem, ThL, ThM;
Tej = Td1 - Tdo;
Tem = Tek - Tel;
ri[WS(rs, 62)] = Tej - Tem;
ri[WS(rs, 30)] = Tej + Tem;
ThL = Teh - TdQ;
ThM = ThJ - ThI;
ii[WS(rs, 30)] = ThL + ThM;
ii[WS(rs, 62)] = ThM - ThL;
}
{
E Ter, Tey, Thz, ThE;
Ter = Ten + Teq;
Tey = Teu + Tex;
ri[WS(rs, 38)] = Ter - Tey;
ri[WS(rs, 6)] = Ter + Tey;
Thz = TeA + TeB;
ThE = ThA + ThD;
ii[WS(rs, 6)] = Thz + ThE;
ii[WS(rs, 38)] = ThE - Thz;
}
{
E Tez, TeC, ThF, ThG;
Tez = Ten - Teq;
TeC = TeA - TeB;
ri[WS(rs, 54)] = Tez - TeC;
ri[WS(rs, 22)] = Tez + TeC;
ThF = Tex - Teu;
ThG = ThD - ThA;
ii[WS(rs, 22)] = ThF + ThG;
ii[WS(rs, 54)] = ThG - ThF;
}
}
{
E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
E Tfg;
{
E TeD, TeG, Tfa, Tfb;
TeD = TcL + TcO;
TeG = KP707106781 * (TeE + TeF);
TeH = TeD - TeG;
Tf9 = TeD + TeG;
{
E TeK, TeN, Thl, Tho;
TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
TeO = TeK - TeN;
Thk = TeK + TeN;
Thl = KP707106781 * (TcU + TcZ);
Tho = Thm + Thn;
Thp = Thl + Tho;
Thv = Tho - Thl;
}
Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
Tfc = Tfa + Tfb;
Thu = Tfb - Tfa;
{
E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
TeY = KP707106781 * (Tee + Ted);
TeZ = TeX - TeY;
Tfh = TeX + TeY;
Tf1 = KP707106781 * (Te0 + Te5);
Tf2 = Tf0 - Tf1;
Tfi = Tf0 + Tf1;
Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
}
{
E TeS, Tfe, TeV, Tff, TeR, TeU;
TeR = KP707106781 * (TdE + Tdz);
TeS = TeQ - TeR;
Tfe = TeQ + TeR;
TeU = KP707106781 * (TdM + TdN);
TeV = TeT - TeU;
Tff = TeT + TeU;
TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
}
}
{
E TeP, Tf4, Tht, Thw;
TeP = TeH + TeO;
Tf4 = TeW + Tf3;
ri[WS(rs, 42)] = TeP - Tf4;
ri[WS(rs, 10)] = TeP + Tf4;
Tht = Tf6 + Tf7;
Thw = Thu + Thv;
ii[WS(rs, 10)] = Tht + Thw;
ii[WS(rs, 42)] = Thw - Tht;
}
{
E Tf5, Tf8, Thx, Thy;
Tf5 = TeH - TeO;
Tf8 = Tf6 - Tf7;
ri[WS(rs, 58)] = Tf5 - Tf8;
ri[WS(rs, 26)] = Tf5 + Tf8;
Thx = Tf3 - TeW;
Thy = Thv - Thu;
ii[WS(rs, 26)] = Thx + Thy;
ii[WS(rs, 58)] = Thy - Thx;
}
{
E Tfd, Tfk, Thj, Thq;
Tfd = Tf9 + Tfc;
Tfk = Tfg + Tfj;
ri[WS(rs, 34)] = Tfd - Tfk;
ri[WS(rs, 2)] = Tfd + Tfk;
Thj = Tfm + Tfn;
Thq = Thk + Thp;
ii[WS(rs, 2)] = Thj + Thq;
ii[WS(rs, 34)] = Thq - Thj;
}
{
E Tfl, Tfo, Thr, Ths;
Tfl = Tf9 - Tfc;
Tfo = Tfm - Tfn;
ri[WS(rs, 50)] = Tfl - Tfo;
ri[WS(rs, 18)] = Tfl + Tfo;
Thr = Tfj - Tfg;
Ths = Thp - Thk;
ii[WS(rs, 18)] = Thr + Ths;
ii[WS(rs, 50)] = Ths - Thr;
}
}
{
E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
E T9H;
{
E T6n, T6K, TiB, TiC;
T6n = T6b - T6m;
T6K = T6y - T6J;
T6L = T6n - T6K;
T9x = T6n + T6K;
TiB = T9P - T9O;
TiC = Tin - Tim;
TiD = TiB + TiC;
TiJ = TiC - TiB;
}
{
E T7c, T9y, T7D, T9z;
{
E T72, T7b, T7t, T7C;
T72 = T6Q - T71;
T7b = T77 - T7a;
T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
T9y = FMA(KP980785280, T72, KP195090322 * T7b);
T7t = T7h - T7s;
T7C = T7y - T7B;
T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
}
T7E = T7c - T7D;
TiI = T9z - T9y;
T9A = T9y + T9z;
TiA = T7c + T7D;
}
{
E T8k, T9C, T8x, T9D;
{
E T7W, T8j, T8t, T8w;
T7W = T7K - T7V;
T8j = T87 - T8i;
T8k = T7W - T8j;
T9C = T7W + T8j;
T8t = T8p - T8s;
T8w = T8u - T8v;
T8x = T8t - T8w;
T9D = T8t + T8w;
}
T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
}
{
E T9d, T9F, T9q, T9G;
{
E T8P, T9c, T9m, T9p;
T8P = T8D - T8O;
T9c = T90 - T9b;
T9d = T8P - T9c;
T9F = T8P + T9c;
T9m = T9i - T9l;
T9p = T9n - T9o;
T9q = T9m - T9p;
T9G = T9m + T9p;
}
T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
}
{
E T7F, T9s, TiH, TiK;
T7F = T6L + T7E;
T9s = T8y + T9r;
ri[WS(rs, 47)] = T7F - T9s;
ri[WS(rs, 15)] = T7F + T9s;
TiH = T9u + T9v;
TiK = TiI + TiJ;
ii[WS(rs, 15)] = TiH + TiK;
ii[WS(rs, 47)] = TiK - TiH;
}
{
E T9t, T9w, TiL, TiM;
T9t = T6L - T7E;
T9w = T9u - T9v;
ri[WS(rs, 63)] = T9t - T9w;
ri[WS(rs, 31)] = T9t + T9w;
TiL = T9r - T8y;
TiM = TiJ - TiI;
ii[WS(rs, 31)] = TiL + TiM;
ii[WS(rs, 63)] = TiM - TiL;
}
{
E T9B, T9I, Tiz, TiE;
T9B = T9x + T9A;
T9I = T9E + T9H;
ri[WS(rs, 39)] = T9B - T9I;
ri[WS(rs, 7)] = T9B + T9I;
Tiz = T9K + T9L;
TiE = TiA + TiD;
ii[WS(rs, 7)] = Tiz + TiE;
ii[WS(rs, 39)] = TiE - Tiz;
}
{
E T9J, T9M, TiF, TiG;
T9J = T9x - T9A;
T9M = T9K - T9L;
ri[WS(rs, 55)] = T9J - T9M;
ri[WS(rs, 23)] = T9J + T9M;
TiF = T9H - T9E;
TiG = TiD - TiA;
ii[WS(rs, 23)] = TiF + TiG;
ii[WS(rs, 55)] = TiG - TiF;
}
}
{
E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
E TbT;
{
E TaD, TaK, Ti7, Ti8;
TaD = Taz - TaC;
TaK = TaG - TaJ;
TaL = TaD - TaK;
TbJ = TaD + TaK;
Ti7 = Tc1 - Tc0;
Ti8 = ThT - ThQ;
Ti9 = Ti7 + Ti8;
Tif = Ti8 - Ti7;
}
{
E TaS, TbK, TaZ, TbL;
{
E TaO, TaR, TaV, TaY;
TaO = TaM - TaN;
TaR = TaP - TaQ;
TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
TaV = TaT - TaU;
TaY = TaW - TaX;
TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
}
Tb0 = TaS - TaZ;
Tie = TbL - TbK;
TbM = TbK + TbL;
Ti6 = TaS + TaZ;
}
{
E Tbc, TbO, Tbj, TbP;
{
E Tb4, Tbb, Tbf, Tbi;
Tb4 = Tb2 - Tb3;
Tbb = Tb7 - Tba;
Tbc = Tb4 - Tbb;
TbO = Tb4 + Tbb;
Tbf = Tbd - Tbe;
Tbi = Tbg - Tbh;
Tbj = Tbf - Tbi;
TbP = Tbf + Tbi;
}
Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
}
{
E Tbv, TbR, TbC, TbS;
{
E Tbn, Tbu, Tby, TbB;
Tbn = Tbl - Tbm;
Tbu = Tbq - Tbt;
Tbv = Tbn - Tbu;
TbR = Tbn + Tbu;
Tby = Tbw - Tbx;
TbB = Tbz - TbA;
TbC = Tby - TbB;
TbS = Tby + TbB;
}
TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
}
{
E Tb1, TbE, Tid, Tig;
Tb1 = TaL + Tb0;
TbE = Tbk + TbD;
ri[WS(rs, 45)] = Tb1 - TbE;
ri[WS(rs, 13)] = Tb1 + TbE;
Tid = TbG + TbH;
Tig = Tie + Tif;
ii[WS(rs, 13)] = Tid + Tig;
ii[WS(rs, 45)] = Tig - Tid;
}
{
E TbF, TbI, Tih, Tii;
TbF = TaL - Tb0;
TbI = TbG - TbH;
ri[WS(rs, 61)] = TbF - TbI;
ri[WS(rs, 29)] = TbF + TbI;
Tih = TbD - Tbk;
Tii = Tif - Tie;
ii[WS(rs, 29)] = Tih + Tii;
ii[WS(rs, 61)] = Tii - Tih;
}
{
E TbN, TbU, Ti5, Tia;
TbN = TbJ + TbM;
TbU = TbQ + TbT;
ri[WS(rs, 37)] = TbN - TbU;
ri[WS(rs, 5)] = TbN + TbU;
Ti5 = TbW + TbX;
Tia = Ti6 + Ti9;
ii[WS(rs, 5)] = Ti5 + Tia;
ii[WS(rs, 37)] = Tia - Ti5;
}
{
E TbV, TbY, Tib, Tic;
TbV = TbJ - TbM;
TbY = TbW - TbX;
ri[WS(rs, 53)] = TbV - TbY;
ri[WS(rs, 21)] = TbV + TbY;
Tib = TbT - TbQ;
Tic = Ti9 - Ti6;
ii[WS(rs, 21)] = Tib + Tic;
ii[WS(rs, 53)] = Tic - Tib;
}
}
{
E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
E TcF;
{
E TbZ, Tc2, ThP, ThU;
TbZ = Taz + TaC;
Tc2 = Tc0 + Tc1;
Tc3 = TbZ - Tc2;
Tcv = TbZ + Tc2;
ThP = TaG + TaJ;
ThU = ThQ + ThT;
ThV = ThP + ThU;
Ti1 = ThU - ThP;
}
{
E Tc6, Tcw, Tc9, Tcx;
{
E Tc4, Tc5, Tc7, Tc8;
Tc4 = TaM + TaN;
Tc5 = TaP + TaQ;
Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
Tc7 = TaT + TaU;
Tc8 = TaW + TaX;
Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
}
Tca = Tc6 - Tc9;
Ti0 = Tcx - Tcw;
Tcy = Tcw + Tcx;
ThO = Tc6 + Tc9;
}
{
E Tce, TcA, Tch, TcB;
{
E Tcc, Tcd, Tcf, Tcg;
Tcc = Tbd + Tbe;
Tcd = Tba + Tb7;
Tce = Tcc - Tcd;
TcA = Tcc + Tcd;
Tcf = Tb2 + Tb3;
Tcg = Tbg + Tbh;
Tch = Tcf - Tcg;
TcB = Tcf + Tcg;
}
Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
}
{
E Tcl, TcD, Tco, TcE;
{
E Tcj, Tck, Tcm, Tcn;
Tcj = Tbl + Tbm;
Tck = TbA + Tbz;
Tcl = Tcj - Tck;
TcD = Tcj + Tck;
Tcm = Tbw + Tbx;
Tcn = Tbq + Tbt;
Tco = Tcm - Tcn;
TcE = Tcm + Tcn;
}
Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
}
{
E Tcb, Tcq, ThZ, Ti2;
Tcb = Tc3 + Tca;
Tcq = Tci + Tcp;
ri[WS(rs, 41)] = Tcb - Tcq;
ri[WS(rs, 9)] = Tcb + Tcq;
ThZ = Tcs + Tct;
Ti2 = Ti0 + Ti1;
ii[WS(rs, 9)] = ThZ + Ti2;
ii[WS(rs, 41)] = Ti2 - ThZ;
}
{
E Tcr, Tcu, Ti3, Ti4;
Tcr = Tc3 - Tca;
Tcu = Tcs - Tct;
ri[WS(rs, 57)] = Tcr - Tcu;
ri[WS(rs, 25)] = Tcr + Tcu;
Ti3 = Tcp - Tci;
Ti4 = Ti1 - Ti0;
ii[WS(rs, 25)] = Ti3 + Ti4;
ii[WS(rs, 57)] = Ti4 - Ti3;
}
{
E Tcz, TcG, ThN, ThW;
Tcz = Tcv + Tcy;
TcG = TcC + TcF;
ri[WS(rs, 33)] = Tcz - TcG;
ri[WS(rs, 1)] = Tcz + TcG;
ThN = TcI + TcJ;
ThW = ThO + ThV;
ii[WS(rs, 1)] = ThN + ThW;
ii[WS(rs, 33)] = ThW - ThN;
}
{
E TcH, TcK, ThX, ThY;
TcH = Tcv - Tcy;
TcK = TcI - TcJ;
ri[WS(rs, 49)] = TcH - TcK;
ri[WS(rs, 17)] = TcH + TcK;
ThX = TcF - TcC;
ThY = ThV - ThO;
ii[WS(rs, 17)] = ThX + ThY;
ii[WS(rs, 49)] = ThY - ThX;
}
}
{
E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
E Tat;
{
E T9N, T9Q, Til, Tio;
T9N = T6b + T6m;
T9Q = T9O + T9P;
T9R = T9N - T9Q;
Taj = T9N + T9Q;
Til = T6y + T6J;
Tio = Tim + Tin;
Tip = Til + Tio;
Tiv = Tio - Til;
}
{
E T9U, Tak, T9X, Tal;
{
E T9S, T9T, T9V, T9W;
T9S = T6Q + T71;
T9T = T77 + T7a;
T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
T9V = T7h + T7s;
T9W = T7y + T7B;
T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
}
T9Y = T9U - T9X;
Tiu = Tal - Tak;
Tam = Tak + Tal;
Tik = T9U + T9X;
}
{
E Ta2, Tao, Ta5, Tap;
{
E Ta0, Ta1, Ta3, Ta4;
Ta0 = T8p + T8s;
Ta1 = T8i + T87;
Ta2 = Ta0 - Ta1;
Tao = Ta0 + Ta1;
Ta3 = T7K + T7V;
Ta4 = T8u + T8v;
Ta5 = Ta3 - Ta4;
Tap = Ta3 + Ta4;
}
Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
}
{
E Ta9, Tar, Tac, Tas;
{
E Ta7, Ta8, Taa, Tab;
Ta7 = T8D + T8O;
Ta8 = T9o + T9n;
Ta9 = Ta7 - Ta8;
Tar = Ta7 + Ta8;
Taa = T9i + T9l;
Tab = T90 + T9b;
Tac = Taa - Tab;
Tas = Taa + Tab;
}
Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
}
{
E T9Z, Tae, Tit, Tiw;
T9Z = T9R + T9Y;
Tae = Ta6 + Tad;
ri[WS(rs, 43)] = T9Z - Tae;
ri[WS(rs, 11)] = T9Z + Tae;
Tit = Tag + Tah;
Tiw = Tiu + Tiv;
ii[WS(rs, 11)] = Tit + Tiw;
ii[WS(rs, 43)] = Tiw - Tit;
}
{
E Taf, Tai, Tix, Tiy;
Taf = T9R - T9Y;
Tai = Tag - Tah;
ri[WS(rs, 59)] = Taf - Tai;
ri[WS(rs, 27)] = Taf + Tai;
Tix = Tad - Ta6;
Tiy = Tiv - Tiu;
ii[WS(rs, 27)] = Tix + Tiy;
ii[WS(rs, 59)] = Tiy - Tix;
}
{
E Tan, Tau, Tij, Tiq;
Tan = Taj + Tam;
Tau = Taq + Tat;
ri[WS(rs, 35)] = Tan - Tau;
ri[WS(rs, 3)] = Tan + Tau;
Tij = Taw + Tax;
Tiq = Tik + Tip;
ii[WS(rs, 3)] = Tij + Tiq;
ii[WS(rs, 35)] = Tiq - Tij;
}
{
E Tav, Tay, Tir, Tis;
Tav = Taj - Tam;
Tay = Taw - Tax;
ri[WS(rs, 51)] = Tav - Tay;
ri[WS(rs, 19)] = Tav + Tay;
Tir = Tat - Taq;
Tis = Tip - Tik;
ii[WS(rs, 19)] = Tir + Tis;
ii[WS(rs, 51)] = Tis - Tir;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 64 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, { 808, 270, 230, 0 }, 0, 0, 0 };
void X(codelet_t1_64) (planner *p) {
X(kdft_dit_register) (p, t1_64, &desc);
}
#endif