GUI-FreeRDP/xrandr.c

2130 lines
54 KiB
C

#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xlibint.h>
#include <X11/Xproto.h>
#include <X11/Xatom.h>
#include <X11/extensions/Xrandr.h>
#include <X11/extensions/Xrender.h>
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdarg.h>
#include <math.h>
#include <unistd.h>
#include "xrandr.h"
static char *program_name;
static Display *dpy;
static Window root;
static int screen = -1;
static Bool verbose = False;
static Bool automatic = False;
static Bool grab_server = True;
static Bool no_primary = False;
static int filter_type = -1;
static const char *filter_names[2] =
{ "bilinear", "nearest" };
static const char *direction[5] =
{ "normal", "left", "inverted", "right", "\n" };
static void _X_NORETURN _X_ATTRIBUTE_PRINTF(1, 2) fatal(const char *format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s: ", program_name);
vfprintf(stderr, format, ap);
va_end(ap);
exit(1);
}
static void _X_ATTRIBUTE_PRINTF(1, 2) warning(const char *format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s: ", program_name);
vfprintf(stderr, format, ap);
va_end(ap);
}
static void _X_NORETURN _X_ATTRIBUTE_PRINTF(1, 2) argerr(const char *format, ...)
{
va_list ap;
va_start(ap, format);
fprintf(stderr, "%s: ", program_name);
vfprintf(stderr, format, ap);
fprintf(stderr, "Try '%s --help' for more information.\n", program_name);
va_end(ap);
exit(1);
}
static inline double dmin(double x, double y)
{
return x < y ? x : y;
}
static const char*
rotation_name(Rotation rotation)
{
int i;
if ((rotation & 0xf) == 0)
return "normal";
for (i = 0; i < 4; i++)
if (rotation & (1 << i))
return direction[i];
return "invalid rotation";
}
static const char*
reflection_name(Rotation rotation)
{
rotation &= (RR_Reflect_X | RR_Reflect_Y);
switch (rotation)
{
case 0:
return "none";
case RR_Reflect_X:
return "X axis";
case RR_Reflect_Y:
return "Y axis";
case RR_Reflect_X | RR_Reflect_Y:
return "X and Y axis";
}
return "invalid reflection";
}
typedef enum _relation
{
relation_left_of, relation_right_of, relation_above, relation_below, relation_same_as,
} relation_t;
typedef struct
{
int x, y, width, height;
} rectangle_t;
typedef struct
{
int x1, y1, x2, y2;
} box_t;
typedef struct
{
int x, y;
} point_t;
typedef enum _changes
{
changes_none = 0,
changes_crtc = (1 << 0),
changes_mode = (1 << 1),
changes_relation = (1 << 2),
changes_position = (1 << 3),
changes_rotation = (1 << 4),
changes_reflection = (1 << 5),
changes_automatic = (1 << 6),
changes_refresh = (1 << 7),
changes_property = (1 << 8),
changes_transform = (1 << 9),
changes_panning = (1 << 10),
changes_gamma = (1 << 11),
changes_primary = (1 << 12),
changes_filter = (1 << 13),
} changes_t;
typedef enum _name_kind
{
name_none = 0, name_string = (1 << 0), name_xid = (1 << 1), name_index = (1 << 2), name_preferred = (1 << 3),
} name_kind_t;
typedef struct
{
name_kind_t kind;
char *string;
XID xid;
int index;
} name_t;
typedef struct _crtc crtc_t;
typedef struct _output output_t;
typedef struct _transform transform_t;
typedef struct _umode umode_t;
typedef struct _output_prop output_prop_t;
typedef struct _provider provider_t;
typedef struct _monitors monitors_t;
typedef struct _umonitor umonitor_t;
struct _transform
{
XTransform transform;
const char *filter;
int nparams;
XFixed *params;
};
struct _crtc
{
name_t crtc;
Bool changing;
XRRCrtcInfo *crtc_info;
XRRModeInfo *mode_info;
XRRPanning *panning_info;
int x;
int y;
Rotation rotation;
output_t **outputs;
int noutput;
transform_t current_transform, pending_transform;
};
struct _output_prop
{
struct _output_prop *next;
char *name;
char *value;
};
struct _output
{
struct _output *next;
changes_t changes;
output_prop_t *props;
name_t output;
XRROutputInfo *output_info;
name_t crtc;
crtc_t *crtc_info;
crtc_t *current_crtc_info;
name_t mode;
double refresh;
XRRModeInfo *mode_info;
name_t addmode;
relation_t relation;
char *relative_to;
int x, y;
Rotation rotation;
XRRPanning panning;
Bool automatic;
int scale_from_w, scale_from_h;
transform_t transform;
struct
{
float red;
float green;
float blue;
} gamma;
float brightness;
Bool primary;
Bool found;
};
typedef enum _umode_action
{
umode_create, umode_destroy, umode_add, umode_delete
} umode_action_t;
struct _umode
{
struct _umode *next;
umode_action_t action;
XRRModeInfo mode;
name_t output;
name_t name;
};
struct _provider
{
name_t provider;
XRRProviderInfo *info;
};
struct _monitors
{
int n;
XRRMonitorInfo *monitors;
};
struct _umonitor
{
struct _umonitor *next;
char *name;
Bool set;
Bool primary;
int x, y, width, height;
int mmwidth, mmheight;
int noutput;
name_t *outputs;
};
#define OUTPUT_NAME 1
#define CRTC_OFF 2
#define CRTC_UNSET 3
#define CRTC_INDEX 0x40000000
#define MODE_NAME 1
#define MODE_OFF 2
#define MODE_UNSET 3
#define MODE_PREF 4
#define POS_UNSET -1
static output_t *all_outputs = NULL;
static output_t **all_outputs_tail = &all_outputs;
static crtc_t *crtcs;
static int num_crtcs;
static XRRScreenResources *res;
static int fb_width = 0, fb_height = 0;
static int fb_width_mm = 0, fb_height_mm = 0;
static double dpi = 0;
static Bool dryrun = False;
static int minWidth, maxWidth, minHeight, maxHeight;
static Bool has_1_2 = False;
static Bool has_1_3 = False;
static Bool has_1_4 = False;
static Bool has_1_5 = False;
static monitors_t *monitors;
static int mode_height(XRRModeInfo *mode_info, Rotation rotation)
{
switch (rotation & 0xf)
{
case RR_Rotate_0:
case RR_Rotate_180:
return mode_info->height;
case RR_Rotate_90:
case RR_Rotate_270:
return mode_info->width;
default:
return 0;
}
}
static int mode_width(XRRModeInfo *mode_info, Rotation rotation)
{
switch (rotation & 0xf)
{
case RR_Rotate_0:
case RR_Rotate_180:
return mode_info->width;
case RR_Rotate_90:
case RR_Rotate_270:
return mode_info->height;
default:
return 0;
}
}
static Bool transform_point(XTransform *transform, double *xp, double *yp)
{
double vector[3];
double result[3];
int i, j;
double v;
vector[0] = *xp;
vector[1] = *yp;
vector[2] = 1;
for (j = 0; j < 3; j++)
{
v = 0;
for (i = 0; i < 3; i++)
v += (XFixedToDouble(transform->matrix[j][i]) * vector[i]);
result[j] = v;
}
if (!result[2])
return False;
for (j = 0; j < 2; j++)
{
vector[j] = result[j] / result[2];
if (vector[j] > 32767 || vector[j] < -32767)
return False;
}
*xp = vector[0];
*yp = vector[1];
return True;
}
static void path_bounds(XTransform *transform, point_t *points, int npoints, box_t *box)
{
int i;
box_t point;
for (i = 0; i < npoints; i++)
{
double x, y;
x = points[i].x;
y = points[i].y;
transform_point(transform, &x, &y);
point.x1 = floor(x);
point.y1 = floor(y);
point.x2 = ceil(x);
point.y2 = ceil(y);
if (i == 0)
*box = point;
else
{
if (point.x1 < box->x1)
box->x1 = point.x1;
if (point.y1 < box->y1)
box->y1 = point.y1;
if (point.x2 > box->x2)
box->x2 = point.x2;
if (point.y2 > box->y2)
box->y2 = point.y2;
}
}
}
static void mode_geometry(XRRModeInfo *mode_info, Rotation rotation, XTransform *transform, box_t *bounds)
{
point_t rect[4];
int width = mode_width(mode_info, rotation);
int height = mode_height(mode_info, rotation);
rect[0].x = 0;
rect[0].y = 0;
rect[1].x = width;
rect[1].y = 0;
rect[2].x = width;
rect[2].y = height;
rect[3].x = 0;
rect[3].y = height;
path_bounds(transform, rect, 4, bounds);
}
static double mode_refresh(const XRRModeInfo *mode_info)
{
double rate;
double vTotal = mode_info->vTotal;
if (mode_info->modeFlags & RR_DoubleScan)
{
vTotal *= 2;
}
if (mode_info->modeFlags & RR_Interlace)
{
vTotal /= 2;
}
if (mode_info->hTotal && vTotal)
rate = ((double) mode_info->dotClock / ((double) mode_info->hTotal * (double) vTotal));
else
rate = 0;
return rate;
}
static void init_name(name_t *name)
{
memset(name, 0, sizeof(*name));
name->kind = name_none;
}
static void set_name_string(name_t *name, char *string)
{
name->kind |= name_string;
name->string = string;
}
static void set_name_xid(name_t *name, XID xid)
{
name->kind |= name_xid;
name->xid = xid;
}
static void set_name_index(name_t *name, int idx)
{
name->kind |= name_index;
name->index = idx;
}
static void set_name_preferred(name_t *name)
{
name->kind |= name_preferred;
}
static void set_name_all(name_t *name, name_t *old)
{
if (old->kind & name_xid)
name->xid = old->xid;
if (old->kind & name_string)
name->string = old->string;
if (old->kind & name_index)
name->index = old->index;
name->kind |= old->kind;
}
static void set_name(name_t *name, char *string, name_kind_t valid)
{
unsigned int xid;
int idx;
if ((valid & name_xid) && sscanf(string, "0x%x", &xid) == 1)
set_name_xid(name, xid);
else if ((valid & name_index) && sscanf(string, "%d", &idx) == 1)
set_name_index(name, idx);
else if (valid & name_string)
set_name_string(name, string);
else
argerr("invalid name '%s'\n", string);
}
static void init_transform(transform_t *transform)
{
int x;
memset(&transform->transform, '\0', sizeof(transform->transform));
for (x = 0; x < 3; x++)
transform->transform.matrix[x][x] = XDoubleToFixed(1.0);
transform->filter = "";
transform->nparams = 0;
transform->params = NULL;
}
static void set_transform(transform_t *dest, XTransform *transform, const char *filter, XFixed *params, int nparams)
{
dest->transform = *transform;
dest->filter = strdup(filter);
dest->nparams = nparams;
dest->params = malloc(nparams * sizeof(XFixed));
memcpy(dest->params, params, nparams * sizeof(XFixed));
}
static void copy_transform(transform_t *dest, transform_t *src)
{
set_transform(dest, &src->transform, src->filter, src->params, src->nparams);
}
static Bool equal_transform(transform_t *a, transform_t *b)
{
if (memcmp(&a->transform, &b->transform, sizeof(XTransform)) != 0)
return False;
if (strcmp(a->filter, b->filter) != 0)
return False;
if (a->nparams != b->nparams)
return False;
if (memcmp(a->params, b->params, a->nparams * sizeof(XFixed)) != 0)
return False;
return True;
}
static output_t*
add_output(void)
{
output_t *output = calloc(1, sizeof(output_t));
if (!output)
fatal("out of memory\n");
output->next = NULL;
output->found = False;
output->brightness = 1.0;
*all_outputs_tail = output;
all_outputs_tail = &output->next;
return output;
}
static output_t*
find_output(name_t *name)
{
output_t *output;
for (output = all_outputs; output; output = output->next)
{
name_kind_t common = name->kind & output->output.kind;
if ((common & name_xid) && name->xid == output->output.xid)
break;
if ((common & name_string) && !strcmp(name->string, output->output.string))
break;
if ((common & name_index) && name->index == output->output.index)
break;
}
return output;
}
static output_t*
find_output_by_xid(RROutput output)
{
name_t output_name;
init_name(&output_name);
set_name_xid(&output_name, output);
return find_output(&output_name);
}
static output_t*
find_output_by_name(char *name)
{
name_t output_name;
init_name(&output_name);
set_name_string(&output_name, name);
return find_output(&output_name);
}
static crtc_t*
find_crtc(name_t *name)
{
int c;
crtc_t *crtc = NULL;
for (c = 0; c < num_crtcs; c++)
{
name_kind_t common;
crtc = &crtcs[c];
common = name->kind & crtc->crtc.kind;
if ((common & name_xid) && name->xid == crtc->crtc.xid)
break;
if ((common & name_string) && !strcmp(name->string, crtc->crtc.string))
break;
if ((common & name_index) && name->index == crtc->crtc.index)
break;
crtc = NULL;
}
return crtc;
}
static crtc_t*
find_crtc_by_xid(RRCrtc crtc)
{
name_t crtc_name;
init_name(&crtc_name);
set_name_xid(&crtc_name, crtc);
return find_crtc(&crtc_name);
}
static XRRModeInfo*
find_mode(name_t *name, double refresh)
{
int m;
XRRModeInfo *best = NULL;
double bestDist = 0;
for (m = 0; m < res->nmode; m++)
{
XRRModeInfo *mode = &res->modes[m];
if ((name->kind & name_xid) && name->xid == mode->id)
{
best = mode;
break;
}
if ((name->kind & name_string) && !strcmp(name->string, mode->name))
{
double dist;
if (refresh)
dist = fabs(mode_refresh(mode) - refresh);
else
dist = 0;
if (!best || dist < bestDist)
{
bestDist = dist;
best = mode;
}
}
}
return best;
}
static XRRModeInfo*
find_mode_by_xid(RRMode mode)
{
name_t mode_name;
init_name(&mode_name);
set_name_xid(&mode_name, mode);
return find_mode(&mode_name, 0);
}
static XRRModeInfo*
find_mode_for_output(output_t *output, name_t *name)
{
XRROutputInfo *output_info = output->output_info;
int m;
XRRModeInfo *best = NULL;
double bestDist = 0;
for (m = 0; m < output_info->nmode; m++)
{
XRRModeInfo *mode;
mode = find_mode_by_xid(output_info->modes[m]);
if (!mode)
continue;
if ((name->kind & name_xid) && name->xid == mode->id)
{
best = mode;
break;
}
if ((name->kind & name_string) && !strcmp(name->string, mode->name))
{
double dist;
if (!output->refresh && (mode->modeFlags & RR_DoubleScan))
continue;
if (output->refresh)
dist = fabs(mode_refresh(mode) - output->refresh);
else
dist = 0;
if (!best || dist < bestDist)
{
bestDist = dist;
best = mode;
}
}
}
return best;
}
static XRRModeInfo*
preferred_mode(output_t *output)
{
XRROutputInfo *output_info = output->output_info;
int m;
XRRModeInfo *best;
int bestDist;
best = NULL;
bestDist = 0;
for (m = 0; m < output_info->nmode; m++)
{
XRRModeInfo *mode_info = find_mode_by_xid(output_info->modes[m]);
int dist;
if (m < output_info->npreferred)
dist = 0;
else if (output_info->mm_height)
dist = (1000 * DisplayHeight(dpy, screen) / DisplayHeightMM(dpy, screen) - 1000 * mode_info->height / output_info->mm_height);
else
dist = DisplayHeight(dpy, screen) - mode_info->height;
if (dist < 0)
dist = -dist;
if (!best || dist < bestDist)
{
best = mode_info;
bestDist = dist;
}
}
return best;
}
static Bool output_can_use_crtc(output_t *output, crtc_t *crtc)
{
XRROutputInfo *output_info = output->output_info;
int c;
for (c = 0; c < output_info->ncrtc; c++)
if (output_info->crtcs[c] == crtc->crtc.xid)
return True;
return False;
}
static Bool output_can_use_mode(output_t *output, XRRModeInfo *mode)
{
XRROutputInfo *output_info = output->output_info;
int m;
for (m = 0; m < output_info->nmode; m++)
if (output_info->modes[m] == mode->id)
return True;
return False;
}
static Bool crtc_can_use_rotation(crtc_t *crtc, Rotation rotation)
{
Rotation rotations = crtc->crtc_info->rotations;
Rotation dir = rotation & (RR_Rotate_0 | RR_Rotate_90 | RR_Rotate_180 | RR_Rotate_270);
Rotation reflect = rotation & (RR_Reflect_X | RR_Reflect_Y);
if (((rotations & dir) != 0) && ((rotations & reflect) == reflect))
return True;
return False;
}
static Bool output_can_use_rotation(output_t *output, Rotation rotation)
{
XRROutputInfo *output_info = output->output_info;
int c;
for (c = 0; c < output_info->ncrtc; c++)
{
crtc_t *crtc = find_crtc_by_xid(output_info->crtcs[c]);
if (crtc && !crtc_can_use_rotation(crtc, rotation))
return False;
}
return True;
}
static Bool output_is_primary(output_t *output)
{
if (has_1_3)
return XRRGetOutputPrimary(dpy, root) == output->output.xid;
return False;
}
static int find_last_non_clamped(CARD16 array[], int size)
{
int i;
for (i = size - 1; i > 0; i--)
{
if (array[i] < 0xffff)
return i;
}
return 0;
}
static void set_gamma_info(output_t *output)
{
XRRCrtcGamma *crtc_gamma;
double i1, v1, i2, v2;
int size, middle, last_best, last_red, last_green, last_blue;
CARD16 *best_array;
if (!output->crtc_info)
return;
size = XRRGetCrtcGammaSize(dpy, output->crtc_info->crtc.xid);
if (!size)
{
warning("Failed to get size of gamma for output %s\n", output->output.string);
return;
}
crtc_gamma = XRRGetCrtcGamma(dpy, output->crtc_info->crtc.xid);
if (!crtc_gamma)
{
warning("Failed to get gamma for output %s\n", output->output.string);
return;
}
last_red = find_last_non_clamped(crtc_gamma->red, size);
last_green = find_last_non_clamped(crtc_gamma->green, size);
last_blue = find_last_non_clamped(crtc_gamma->blue, size);
best_array = crtc_gamma->red;
last_best = last_red;
if (last_green > last_best)
{
last_best = last_green;
best_array = crtc_gamma->green;
}
if (last_blue > last_best)
{
last_best = last_blue;
best_array = crtc_gamma->blue;
}
if (last_best == 0)
last_best = 1;
middle = last_best / 2;
i1 = (double) (middle + 1) / size;
v1 = (double) (best_array[middle]) / 65535;
i2 = (double) (last_best + 1) / size;
v2 = (double) (best_array[last_best]) / 65535;
if (v2 < 0.0001)
{
output->brightness = 0;
output->gamma.red = 1;
output->gamma.green = 1;
output->gamma.blue = 1;
}
else
{
if ((last_best + 1) == size)
output->brightness = v2;
else
output->brightness = exp((log(v2) * log(i1) - log(v1) * log(i2)) / log(i1 / i2));
output->gamma.red = log((double) (crtc_gamma->red[last_red / 2]) / output->brightness / 65535) / log((double) ((last_red / 2) + 1) / size);
output->gamma.green = log((double) (crtc_gamma->green[last_green / 2]) / output->brightness / 65535)
/ log((double) ((last_green / 2) + 1) / size);
output->gamma.blue = log((double) (crtc_gamma->blue[last_blue / 2]) / output->brightness / 65535)
/ log((double) ((last_blue / 2) + 1) / size);
}
XRRFreeGamma(crtc_gamma);
}
static void set_output_info(output_t *output, RROutput xid, XRROutputInfo *output_info)
{
if (output_info->connection != RR_Disconnected && !output_info->nmode)
warning("Output %s is not disconnected but has no modes\n", output_info->name);
if (!(output->output.kind & name_xid))
set_name_xid(&output->output, xid);
if (!(output->output.kind & name_string))
set_name_string(&output->output, output_info->name);
output->output_info = output_info;
if (!(output->changes & changes_crtc))
set_name_xid(&output->crtc, output_info->crtc);
if (output->crtc.kind == name_xid && output->crtc.xid == None)
output->crtc_info = NULL;
else
{
output->crtc_info = find_crtc(&output->crtc);
if (!output->crtc_info)
{
if (output->crtc.kind & name_xid)
fatal("cannot find crtc 0x%lx\n", output->crtc.xid);
if (output->crtc.kind & name_index)
fatal("cannot find crtc %d\n", output->crtc.index);
}
if (!output_can_use_crtc(output, output->crtc_info))
fatal("output %s cannot use crtc 0x%lx\n", output->output.string, output->crtc_info->crtc.xid);
}
if (!(output->changes & changes_mode))
{
crtc_t *crtc = NULL;
if (output_info->crtc)
crtc = find_crtc_by_xid(output_info->crtc);
if (crtc && crtc->crtc_info)
set_name_xid(&output->mode, crtc->crtc_info->mode);
else if (output->crtc_info)
set_name_xid(&output->mode, output->crtc_info->crtc_info->mode);
else
set_name_xid(&output->mode, None);
if (output->mode.xid)
{
output->mode_info = find_mode_by_xid(output->mode.xid);
if (!output->mode_info)
fatal("server did not report mode 0x%lx for output %s\n", output->mode.xid, output->output.string);
}
else
output->mode_info = NULL;
}
else if (output->mode.kind == name_xid && output->mode.xid == None)
output->mode_info = NULL;
else
{
if (output->mode.kind == name_preferred)
output->mode_info = preferred_mode(output);
else
output->mode_info = find_mode_for_output(output, &output->mode);
if (!output->mode_info)
{
if (output->mode.kind & name_preferred)
fatal("cannot find preferred mode\n");
if (output->mode.kind & name_string)
fatal("cannot find mode %s\n", output->mode.string);
if (output->mode.kind & name_xid)
fatal("cannot find mode 0x%lx\n", output->mode.xid);
}
if (!output_can_use_mode(output, output->mode_info))
fatal("output %s cannot use mode %s\n", output->output.string, output->mode_info->name);
}
if (!(output->changes & changes_position))
{
if (output->crtc_info)
{
output->x = output->crtc_info->crtc_info->x;
output->y = output->crtc_info->crtc_info->y;
}
else
{
output->x = 0;
output->y = 0;
}
}
if (!(output->changes & changes_rotation))
{
output->rotation &= ~0xf;
if (output->crtc_info)
output->rotation |= (output->crtc_info->crtc_info->rotation & 0xf);
else
output->rotation = RR_Rotate_0;
}
if (!(output->changes & changes_reflection))
{
output->rotation &= ~(RR_Reflect_X | RR_Reflect_Y);
if (output->crtc_info)
output->rotation |= (output->crtc_info->crtc_info->rotation & (RR_Reflect_X | RR_Reflect_Y));
}
if (!output_can_use_rotation(output, output->rotation))
fatal("output %s cannot use rotation \"%s\" reflection \"%s\"\n", output->output.string, rotation_name(output->rotation),
reflection_name(output->rotation));
if (!(output->changes & changes_gamma))
set_gamma_info(output);
if (!(output->changes & changes_transform))
{
if (output->crtc_info)
copy_transform(&output->transform, &output->crtc_info->current_transform);
else
init_transform(&output->transform);
}
else
{
if (output->scale_from_w > 0 && output->mode_info)
{
double sx = (double) output->scale_from_w / output->mode_info->width;
double sy = (double) output->scale_from_h / output->mode_info->height;
if (verbose)
printf("scaling %s by %lfx%lf\n", output->output.string, sx, sy);
init_transform(&output->transform);
output->transform.transform.matrix[0][0] = XDoubleToFixed(sx);
output->transform.transform.matrix[1][1] = XDoubleToFixed(sy);
output->transform.transform.matrix[2][2] = XDoubleToFixed(1.0);
if (sx != 1 || sy != 1)
output->transform.filter = "bilinear";
else
output->transform.filter = "nearest";
output->transform.nparams = 0;
output->transform.params = NULL;
}
}
if (output->changes & changes_filter)
{
output->transform.filter = filter_names[filter_type];
}
if (!(output->changes & changes_primary))
output->primary = output_is_primary(output);
}
static void get_screen(Bool current)
{
if (!has_1_2)
fatal("Server RandR version before 1.2\n");
if (res)
return;
XRRGetScreenSizeRange(dpy, root, &minWidth, &minHeight, &maxWidth, &maxHeight);
if (current)
res = XRRGetScreenResourcesCurrent(dpy, root);
else
res = XRRGetScreenResources(dpy, root);
if (!res)
fatal("could not get screen resources");
}
static void get_crtcs(void)
{
int c;
num_crtcs = res->ncrtc;
crtcs = calloc(num_crtcs, sizeof(crtc_t));
if (!crtcs)
fatal("out of memory\n");
for (c = 0; c < res->ncrtc; c++)
{
XRRCrtcInfo *crtc_info = XRRGetCrtcInfo(dpy, res, res->crtcs[c]);
XRRCrtcTransformAttributes *attr;
XRRPanning *panning_info = NULL;
if (has_1_3)
{
XRRPanning zero;
memset(&zero, 0, sizeof(zero));
panning_info = XRRGetPanning(dpy, res, res->crtcs[c]);
zero.timestamp = panning_info->timestamp;
if (!memcmp(panning_info, &zero, sizeof(zero)))
{
Xfree(panning_info);
panning_info = NULL;
}
}
set_name_xid(&crtcs[c].crtc, res->crtcs[c]);
set_name_index(&crtcs[c].crtc, c);
if (!crtc_info)
fatal("could not get crtc 0x%lx information\n", res->crtcs[c]);
crtcs[c].crtc_info = crtc_info;
crtcs[c].panning_info = panning_info;
if (crtc_info->mode == None)
{
crtcs[c].mode_info = NULL;
crtcs[c].x = 0;
crtcs[c].y = 0;
crtcs[c].rotation = RR_Rotate_0;
}
if (XRRGetCrtcTransform(dpy, res->crtcs[c], &attr) && attr)
{
set_transform(&crtcs[c].current_transform, &attr->currentTransform, attr->currentFilter, attr->currentParams, attr->currentNparams);
XFree(attr);
}
else
{
init_transform(&crtcs[c].current_transform);
}
copy_transform(&crtcs[c].pending_transform, &crtcs[c].current_transform);
}
}
static void crtc_add_output(crtc_t *crtc, output_t *output)
{
if (crtc->outputs)
crtc->outputs = realloc(crtc->outputs, (crtc->noutput + 1) * sizeof(output_t*));
else
{
crtc->outputs = malloc(sizeof(output_t*));
crtc->x = output->x;
crtc->y = output->y;
crtc->rotation = output->rotation;
crtc->mode_info = output->mode_info;
copy_transform(&crtc->pending_transform, &output->transform);
}
if (!crtc->outputs)
fatal("out of memory\n");
crtc->outputs[crtc->noutput++] = output;
}
static void set_crtcs(void)
{
output_t *output;
for (output = all_outputs; output; output = output->next)
{
if (!output->mode_info)
continue;
crtc_add_output(output->crtc_info, output);
}
}
static void set_panning(void)
{
output_t *output;
for (output = all_outputs; output; output = output->next)
{
if (!output->crtc_info)
continue;
if (!(output->changes & changes_panning))
continue;
if (!output->crtc_info->panning_info)
output->crtc_info->panning_info = malloc(sizeof(XRRPanning));
memcpy(output->crtc_info->panning_info, &output->panning, sizeof(XRRPanning));
output->crtc_info->changing = 1;
}
}
static void set_gamma(void)
{
output_t *output;
for (output = all_outputs; output; output = output->next)
{
int i, size;
crtc_t *crtc;
XRRCrtcGamma *crtc_gamma;
float gammaRed;
float gammaGreen;
float gammaBlue;
if (!(output->changes & changes_gamma))
continue;
if (!output->crtc_info)
{
fatal("Need crtc to set gamma on.\n");
continue;
}
crtc = output->crtc_info;
size = XRRGetCrtcGammaSize(dpy, crtc->crtc.xid);
if (!size)
{
fatal("Gamma size is 0.\n");
continue;
}
if (size > 65536)
{
fatal("Gamma correction table is impossibly large.\n");
continue;
}
crtc_gamma = XRRAllocGamma(size);
if (!crtc_gamma)
{
fatal("Gamma allocation failed.\n");
continue;
}
if (output->gamma.red == 0.0)
output->gamma.red = 1.0;
if (output->gamma.green == 0.0)
output->gamma.green = 1.0;
if (output->gamma.blue == 0.0)
output->gamma.blue = 1.0;
gammaRed = 1.0 / output->gamma.red;
gammaGreen = 1.0 / output->gamma.green;
gammaBlue = 1.0 / output->gamma.blue;
for (i = 0; i < size; i++)
{
if (gammaRed == 1.0 && output->brightness == 1.0)
crtc_gamma->red[i] = (double) i / (double) (size - 1) * 65535.0;
else
crtc_gamma->red[i] = dmin(pow((double) i / (double) (size - 1), gammaRed) * output->brightness, 1.0) * 65535.0;
if (gammaGreen == 1.0 && output->brightness == 1.0)
crtc_gamma->green[i] = (double) i / (double) (size - 1) * 65535.0;
else
crtc_gamma->green[i] = dmin(pow((double) i / (double) (size - 1), gammaGreen) * output->brightness, 1.0) * 65535.0;
if (gammaBlue == 1.0 && output->brightness == 1.0)
crtc_gamma->blue[i] = (double) i / (double) (size - 1) * 65535.0;
else
crtc_gamma->blue[i] = dmin(pow((double) i / (double) (size - 1), gammaBlue) * output->brightness, 1.0) * 65535.0;
}
XRRSetCrtcGamma(dpy, crtc->crtc.xid, crtc_gamma);
free(crtc_gamma);
}
}
static void set_primary(void)
{
output_t *output;
if (no_primary)
{
XRRSetOutputPrimary(dpy, root, None);
}
else
{
for (output = all_outputs; output; output = output->next)
{
if (!(output->changes & changes_primary))
continue;
if (output->primary)
XRRSetOutputPrimary(dpy, root, output->output.xid);
}
}
}
static Status crtc_disable(crtc_t *crtc)
{
if (verbose)
printf("crtc %d: disable\n", crtc->crtc.index);
if (dryrun)
return RRSetConfigSuccess;
return XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, 0, 0, None, RR_Rotate_0, NULL, 0);
}
static void crtc_set_transform(crtc_t *crtc, transform_t *transform)
{
int major, minor;
XRRQueryVersion(dpy, &major, &minor);
if (major > 1 || (major == 1 && minor >= 3))
XRRSetCrtcTransform(dpy, crtc->crtc.xid, &transform->transform, transform->filter, transform->params, transform->nparams);
}
static Status crtc_revert(crtc_t *crtc)
{
XRRCrtcInfo *crtc_info = crtc->crtc_info;
if (verbose)
printf("crtc %d: revert\n", crtc->crtc.index);
if (dryrun)
return RRSetConfigSuccess;
if (!equal_transform(&crtc->current_transform, &crtc->pending_transform))
crtc_set_transform(crtc, &crtc->current_transform);
return XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, crtc_info->x, crtc_info->y, crtc_info->mode, crtc_info->rotation,
crtc_info->outputs, crtc_info->noutput);
}
static Status crtc_apply(crtc_t *crtc)
{
RROutput *rr_outputs;
int o;
Status s;
RRMode mode = None;
if (!crtc->changing || !crtc->mode_info)
return RRSetConfigSuccess;
rr_outputs = calloc(crtc->noutput, sizeof(RROutput));
if (!rr_outputs)
return BadAlloc;
for (o = 0; o < crtc->noutput; o++)
rr_outputs[o] = crtc->outputs[o]->output.xid;
mode = crtc->mode_info->id;
if (verbose)
{
printf("crtc %d: %12s %6.2f +%d+%d", crtc->crtc.index, crtc->mode_info->name, mode_refresh(crtc->mode_info), crtc->x, crtc->y);
for (o = 0; o < crtc->noutput; o++)
printf(" \"%s\"", crtc->outputs[o]->output.string);
printf("\n");
}
if (dryrun)
s = RRSetConfigSuccess;
else
{
if (!equal_transform(&crtc->current_transform, &crtc->pending_transform))
crtc_set_transform(crtc, &crtc->pending_transform);
s = XRRSetCrtcConfig(dpy, res, crtc->crtc.xid, CurrentTime, crtc->x, crtc->y, mode, crtc->rotation, rr_outputs, crtc->noutput);
if (s == RRSetConfigSuccess && crtc->panning_info)
{
if (has_1_3)
s = XRRSetPanning(dpy, res, crtc->crtc.xid, crtc->panning_info);
else
fatal("panning needs RandR 1.3\n");
}
}
free(rr_outputs);
return s;
}
static void screen_revert(void)
{
if (verbose)
printf("screen %d: revert\n", screen);
if (dryrun)
return;
XRRSetScreenSize(dpy, root, DisplayWidth(dpy, screen), DisplayHeight(dpy, screen), DisplayWidthMM(dpy, screen), DisplayHeightMM(dpy, screen));
}
static void screen_apply(void)
{
if (fb_width == DisplayWidth(dpy, screen) && fb_height == DisplayHeight(dpy, screen) && fb_width_mm == DisplayWidthMM(dpy, screen)
&& fb_height_mm == DisplayHeightMM(dpy, screen))
{
return;
}
if (verbose)
printf("screen %d: %dx%d %dx%d mm %6.2fdpi\n", screen, fb_width, fb_height, fb_width_mm, fb_height_mm, dpi);
if (dryrun)
return;
XRRSetScreenSize(dpy, root, fb_width, fb_height, fb_width_mm, fb_height_mm);
}
static void revert(void)
{
int c;
for (c = 0; c < res->ncrtc; c++)
crtc_disable(&crtcs[c]);
screen_revert();
for (c = 0; c < res->ncrtc; c++)
crtc_revert(&crtcs[c]);
}
static void _X_NORETURN panic(Status s, crtc_t *crtc)
{
int c = crtc->crtc.index;
const char *message;
switch (s)
{
case RRSetConfigSuccess:
message = "succeeded";
break;
case BadAlloc:
message = "out of memory";
break;
case RRSetConfigFailed:
message = "failed";
break;
case RRSetConfigInvalidConfigTime:
message = "invalid config time";
break;
case RRSetConfigInvalidTime:
message = "invalid time";
break;
default:
message = "unknown failure";
break;
}
fprintf(stderr, "%s: Configure crtc %d %s\n", program_name, c, message);
revert();
exit(1);
}
static void apply(void)
{
Status s;
int c;
if (grab_server)
XGrabServer(dpy);
for (c = 0; c < res->ncrtc; c++)
{
crtc_t *crtc = &crtcs[c];
XRRCrtcInfo *crtc_info = crtc->crtc_info;
if (crtc_info->mode == None)
continue;
if (crtc->mode_info)
{
XRRModeInfo *old_mode = find_mode_by_xid(crtc_info->mode);
int x, y, w, h;
box_t bounds;
if (!old_mode)
panic(RRSetConfigFailed, crtc);
mode_geometry(old_mode, crtc_info->rotation, &crtc->current_transform.transform, &bounds);
x = crtc_info->x + bounds.x1;
y = crtc_info->y + bounds.y1;
w = bounds.x2 - bounds.x1;
h = bounds.y2 - bounds.y1;
if (x + w <= fb_width && y + h <= fb_height)
continue;
crtc->changing = True;
}
s = crtc_disable(crtc);
if (s != RRSetConfigSuccess)
panic(s, crtc);
}
screen_apply();
for (c = 0; c < res->ncrtc; c++)
{
crtc_t *crtc = &crtcs[c];
s = crtc_apply(crtc);
if (s != RRSetConfigSuccess)
panic(s, crtc);
}
set_primary();
if (grab_server)
XUngrabServer(dpy);
}
static void get_outputs(void)
{
int o;
output_t *q;
for (o = 0; o < res->noutput; o++)
{
XRROutputInfo *output_info = XRRGetOutputInfo(dpy, res, res->outputs[o]);
output_t *output;
name_t output_name;
if (!output_info)
fatal("could not get output 0x%lx information\n", res->outputs[o]);
init_name(&output_name);
set_name_xid(&output_name, res->outputs[o]);
set_name_index(&output_name, o);
set_name_string(&output_name, output_info->name);
output = find_output(&output_name);
if (!output)
{
output = add_output();
set_name_all(&output->output, &output_name);
if (automatic)
{
switch (output_info->connection)
{
case RR_Connected:
if (!output_info->crtc)
{
output->changes |= changes_automatic;
output->automatic = True;
}
break;
case RR_Disconnected:
if (output_info->crtc)
{
output->changes |= changes_automatic;
output->automatic = True;
}
break;
}
}
}
output->found = True;
if (output->automatic)
{
switch (output_info->connection)
{
case RR_Connected:
case RR_UnknownConnection:
if ((!(output->changes & changes_mode)))
{
set_name_preferred(&output->mode);
output->changes |= changes_mode;
}
break;
case RR_Disconnected:
if ((!(output->changes & changes_mode)))
{
set_name_xid(&output->mode, None);
set_name_xid(&output->crtc, None);
output->changes |= changes_mode;
output->changes |= changes_crtc;
}
break;
}
}
set_output_info(output, res->outputs[o], output_info);
}
for (q = all_outputs; q; q = q->next)
{
if (!q->found)
{
fprintf(stderr, "warning: output %s not found; ignoring\n", q->output.string);
}
}
}
static void get_monitors(Bool get_active)
{
XRRMonitorInfo *m;
int n;
if (!has_1_5 || monitors)
return;
m = XRRGetMonitors(dpy, root, get_active, &n);
if (n == -1)
fatal("get monitors failed\n");
monitors = calloc(1, sizeof(monitors_t));
monitors->n = n;
monitors->monitors = m;
}
static void mark_changing_crtcs(void)
{
int c;
for (c = 0; c < num_crtcs; c++)
{
crtc_t *crtc = &crtcs[c];
int o;
output_t *output;
for (o = 0; o < crtc->crtc_info->noutput; o++)
{
output = find_output_by_xid(crtc->crtc_info->outputs[o]);
if (!output)
fatal("cannot find output 0x%lx\n", crtc->crtc_info->outputs[o]);
if (output->changes)
crtc->changing = True;
}
for (o = 0; o < crtc->noutput; o++)
{
output = crtc->outputs[o];
if (output->changes)
crtc->changing = True;
}
}
}
static Bool check_crtc_for_output(crtc_t *crtc, output_t *output)
{
int c;
int l;
output_t *other;
for (c = 0; c < output->output_info->ncrtc; c++)
if (output->output_info->crtcs[c] == crtc->crtc.xid)
break;
if (c == output->output_info->ncrtc)
return False;
for (other = all_outputs; other; other = other->next)
{
if (other == output)
continue;
if (other->mode_info == NULL)
continue;
if (other->crtc_info != crtc)
continue;
for (l = 0; l < output->output_info->nclone; l++)
if (output->output_info->clones[l] == other->output.xid)
break;
if (l == output->output_info->nclone)
return False;
}
if (crtc->noutput)
{
if (crtc->mode_info != output->mode_info)
return False;
if (crtc->x != output->x)
return False;
if (crtc->y != output->y)
return False;
if (crtc->rotation != output->rotation)
return False;
if (!equal_transform(&crtc->current_transform, &output->transform))
return False;
}
else if (crtc->crtc_info->noutput)
{
XRRModeInfo *mode = find_mode_by_xid(crtc->crtc_info->mode);
if (mode != output->mode_info)
return False;
if (crtc->crtc_info->x != output->x)
return False;
if (crtc->crtc_info->y != output->y)
return False;
if (crtc->crtc_info->rotation != output->rotation)
return False;
}
return True;
}
static crtc_t*
find_crtc_for_output(output_t *output)
{
int c;
for (c = 0; c < output->output_info->ncrtc; c++)
{
crtc_t *crtc;
crtc = find_crtc_by_xid(output->output_info->crtcs[c]);
if (!crtc)
fatal("cannot find crtc 0x%lx\n", output->output_info->crtcs[c]);
if (check_crtc_for_output(crtc, output))
return crtc;
}
return NULL;
}
static void set_positions(void)
{
output_t *output;
Bool keep_going;
Bool any_set;
int min_x, min_y;
for (;;)
{
any_set = False;
keep_going = False;
for (output = all_outputs; output; output = output->next)
{
output_t *relation;
name_t relation_name;
if (!(output->changes & changes_relation))
continue;
if (output->mode_info == NULL)
continue;
init_name(&relation_name);
set_name_string(&relation_name, output->relative_to);
relation = find_output(&relation_name);
if (!relation)
fatal("cannot find output \"%s\"\n", output->relative_to);
if (relation->mode_info == NULL)
{
output->x = 0;
output->y = 0;
output->changes |= changes_position;
any_set = True;
continue;
}
if ((relation->changes & changes_relation) && !(relation->changes & changes_position))
{
keep_going = True;
continue;
}
switch (output->relation)
{
case relation_left_of:
output->y = relation->y;
output->x = relation->x - mode_width(output->mode_info, output->rotation);
break;
case relation_right_of:
output->y = relation->y;
output->x = relation->x + mode_width(relation->mode_info, relation->rotation);
break;
case relation_above:
output->x = relation->x;
output->y = relation->y - mode_height(output->mode_info, output->rotation);
break;
case relation_below:
output->x = relation->x;
output->y = relation->y + mode_height(relation->mode_info, relation->rotation);
break;
case relation_same_as:
output->x = relation->x;
output->y = relation->y;
}
output->changes |= changes_position;
any_set = True;
}
if (!keep_going)
break;
if (!any_set)
fatal("loop in relative position specifications\n");
}
min_x = 32768;
min_y = 32768;
for (output = all_outputs; output; output = output->next)
{
if (output->mode_info == NULL)
continue;
if (output->x < min_x)
min_x = output->x;
if (output->y < min_y)
min_y = output->y;
}
if (min_x || min_y)
{
for (output = all_outputs; output; output = output->next)
{
if (output->mode_info == NULL)
continue;
output->x -= min_x;
output->y -= min_y;
output->changes |= changes_position;
}
}
}
static void set_screen_size(void)
{
output_t *output;
Bool fb_specified = fb_width != 0 && fb_height != 0;
for (output = all_outputs; output; output = output->next)
{
XRRModeInfo *mode_info = output->mode_info;
int x, y, w, h;
box_t bounds;
if (!mode_info)
continue;
mode_geometry(mode_info, output->rotation, &output->transform.transform, &bounds);
x = output->x + bounds.x1;
y = output->y + bounds.y1;
w = bounds.x2 - bounds.x1;
h = bounds.y2 - bounds.y1;
if (fb_specified)
{
if (x + w > fb_width || y + h > fb_height)
warning("specified screen %dx%d not large enough for output %s (%dx%d+%d+%d)\n", fb_width, fb_height, output->output.string, w, h, x,
y);
}
else
{
XRRPanning *pan;
if (x + w > fb_width)
fb_width = x + w;
if (y + h > fb_height)
fb_height = y + h;
if (output->changes & changes_panning)
pan = &output->panning;
else
pan = output->crtc_info ? output->crtc_info->panning_info : NULL;
if (pan && pan->left + pan->width > fb_width)
fb_width = pan->left + pan->width;
if (pan && pan->top + pan->height > fb_height)
fb_height = pan->top + pan->height;
}
}
if (fb_width > maxWidth || fb_height > maxHeight)
fatal("screen cannot be larger than %dx%d (desired size %dx%d)\n", maxWidth, maxHeight, fb_width, fb_height);
if (fb_specified)
{
if (fb_width < minWidth || fb_height < minHeight)
fatal("screen must be at least %dx%d\n", minWidth, minHeight);
}
else
{
if (fb_width < minWidth)
fb_width = minWidth;
if (fb_height < minHeight)
fb_height = minHeight;
}
}
static void disable_outputs(output_t *outputs)
{
while (outputs)
{
outputs->crtc_info = NULL;
outputs = outputs->next;
}
}
static int pick_crtcs_score(output_t *outputs)
{
output_t *output;
int best_score;
int my_score;
int score;
crtc_t *best_crtc;
int c;
if (!outputs)
return 0;
output = outputs;
outputs = outputs->next;
output->crtc_info = NULL;
best_score = pick_crtcs_score(outputs);
if (output->mode_info == NULL)
return best_score;
best_crtc = NULL;
for (c = 0; c < output->output_info->ncrtc; c++)
{
crtc_t *crtc;
crtc = find_crtc_by_xid(output->output_info->crtcs[c]);
if (!crtc)
fatal("cannot find crtc 0x%lx\n", output->output_info->crtcs[c]);
disable_outputs(outputs);
if (!check_crtc_for_output(crtc, output))
continue;
my_score = 1000;
if (crtc == output->current_crtc_info)
my_score++;
output->crtc_info = crtc;
score = my_score + pick_crtcs_score(outputs);
if (score > best_score)
{
best_crtc = crtc;
best_score = score;
}
}
if (output->crtc_info != best_crtc)
output->crtc_info = best_crtc;
(void) pick_crtcs_score(outputs);
return best_score;
}
static void pick_crtcs(void)
{
output_t *output;
int saved_crtc_noutput[num_crtcs];
int n;
for (output = all_outputs; output; output = output->next)
{
if (output->changes && output->mode_info)
{
if (output->crtc_info)
{
if (output->crtc_info->crtc_info->noutput > 0
&& (output->crtc_info->crtc_info->noutput > 1 || output != find_output_by_xid(output->crtc_info->crtc_info->outputs[0])))
break;
}
else
{
output->crtc_info = find_crtc_for_output(output);
if (!output->crtc_info)
break;
}
}
}
if (!output)
return;
for (output = all_outputs; output; output = output->next)
output->current_crtc_info = output->crtc_info;
for (n = 0; n < num_crtcs; n++)
{
saved_crtc_noutput[n] = crtcs[n].crtc_info->noutput;
crtcs[n].crtc_info->noutput = 0;
}
pick_crtcs_score(all_outputs);
for (n = 0; n < num_crtcs; n++)
crtcs[n].crtc_info->noutput = saved_crtc_noutput[n];
for (output = all_outputs; output; output = output->next)
{
if (output->mode_info && !output->crtc_info)
fatal("cannot find crtc for output %s\n", output->output.string);
if (!output->changes && output->crtc_info != output->current_crtc_info)
output->changes |= changes_crtc;
}
}
void set_default_global()
{
fb_width_mm = 0;
fb_height_mm = 0;
all_outputs = NULL;
all_outputs_tail = &all_outputs;
crtcs = NULL;
num_crtcs = 0;
res = NULL;
fb_width = 0, fb_height = 0;
fb_width_mm = 0, fb_height_mm = 0;
dpi = 0;
dryrun = False;
has_1_2 = False;
has_1_3 = False;
has_1_4 = False;
has_1_5 = False;
program_name = NULL;
dpy = NULL;
screen = -1;
verbose = False;
automatic = False;
grab_server = True;
no_primary = False;
filter_type = -1;
monitors = NULL;
}
typedef struct
{
char *first_monitor;
char *second_monitor;
int is_position;
relation_t position;
int primary;
} x_change;
int XChange(x_change *settings)
{
if (!settings->first_monitor)
return 1;
setenv("DISPLAY", ":0.0", 0);
char *display_name = NULL;
int event_base, error_base;
output_t *config_output = NULL;
int major, minor;
config_output = find_output_by_name(settings->first_monitor);
if (!config_output)
{
config_output = add_output();
set_name(&config_output->output, settings->first_monitor, name_string | name_xid);
}
if (settings->primary)
{
config_output->changes |= changes_primary;
config_output->primary = True;
}
if (settings->is_position && settings->second_monitor)
{
config_output->relation = settings->position;
config_output->relative_to = settings->second_monitor;
config_output->changes |= changes_relation;
}
dpy = XOpenDisplay(display_name);
if (dpy == NULL)
{
fprintf(stderr, "Can't open display %s\n", XDisplayName(display_name));
exit(1);
}
if (screen < 0)
screen = DefaultScreen(dpy);
if (screen >= ScreenCount(dpy))
{
fprintf(stderr, "Invalid screen number %d (display has %d)\n", screen, ScreenCount(dpy));
exit(1);
}
root = RootWindow(dpy, screen);
if (!XRRQueryExtension(dpy, &event_base, &error_base) || !XRRQueryVersion(dpy, &major, &minor))
{
fprintf(stderr, "RandR extension missing\n");
exit(1);
}
if (major > 1 || (major == 1 && minor >= 2))
has_1_2 = True;
if (major > 1 || (major == 1 && minor >= 3))
has_1_3 = True;
if (major > 1 || (major == 1 && minor >= 4))
has_1_4 = True;
if (major > 1 || (major == 1 && minor >= 5))
has_1_5 = True;
get_screen(True);
get_crtcs();
get_outputs();
set_positions();
set_screen_size();
pick_crtcs();
set_crtcs();
mark_changing_crtcs();
if (fb_width_mm == 0 || fb_height_mm == 0)
{
if (fb_width != DisplayWidth(dpy, screen) || fb_height != DisplayHeight(dpy, screen) || dpi != 0.0)
{
if (dpi <= 0)
dpi = (25.4 * DisplayHeight(dpy, screen)) / DisplayHeightMM(dpy, screen);
fb_width_mm = (25.4 * fb_width) / dpi;
fb_height_mm = (25.4 * fb_height) / dpi;
}
else
{
fb_width_mm = DisplayWidthMM(dpy, screen);
fb_height_mm = DisplayHeightMM(dpy, screen);
}
}
set_panning();
set_gamma();
apply();
XSync(dpy, False);
XCloseDisplay(dpy);
set_default_global();
return 0;
}
int XInfo(x_info *info)
{
setenv("DISPLAY", ":0.0", 0);
char *display_name = NULL;
int event_base, error_base;
int major, minor;
dpy = XOpenDisplay(display_name);
if (dpy == NULL)
{
fprintf(stderr, "Can't open display %s\n", XDisplayName(display_name));
exit(1);
}
if (screen < 0)
screen = DefaultScreen(dpy);
if (screen >= ScreenCount(dpy))
{
fprintf(stderr, "Invalid screen number %d (display has %d)\n", screen, ScreenCount(dpy));
exit(1);
}
root = RootWindow(dpy, screen);
if (!XRRQueryExtension(dpy, &event_base, &error_base) || !XRRQueryVersion(dpy, &major, &minor))
{
fprintf(stderr, "RandR extension missing\n");
exit(1);
}
if (major > 1 || (major == 1 && minor >= 2))
has_1_2 = True;
if (major > 1 || (major == 1 && minor >= 3))
has_1_3 = True;
if (major > 1 || (major == 1 && minor >= 4))
has_1_4 = True;
if (major > 1 || (major == 1 && minor >= 5))
has_1_5 = True;
if (!has_1_5)
{
printf("RandR 1.5 not supported\n");
exit(0);
}
get_screen(False);
get_monitors(False);
get_crtcs();
get_outputs();
if (monitors)
{
info->count = monitors->n;
for (int m = 0; m < monitors->n; m++)
{
strcpy(info->monitor[m].name, XGetAtomName(dpy, monitors->monitors[m].name));
info->monitor[m].primary = monitors->monitors[m].primary ? 1 : 0;
info->monitor[m].width = monitors->monitors[m].width;
info->monitor[m].height = monitors->monitors[m].height;
}
XCloseDisplay(dpy);
free(monitors);
set_default_global();
return 0;
}
XCloseDisplay(dpy);
set_default_global();
return 1;
}